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Influence of through flow on binary fluid convection

P. Büchel and M. Lücke
Institut für Theoretische Physik, Universita¨t des Saarlandes, Postfach 151150,D-66041 Saarbru¨cken, Germany

~Received 15 October 1999!

The influence of an externally imposed lateral Poiseuille through flow on linear, nonlinear, and transient
behavior of transverse convective rolls in a horizontal layer of binary fluids heated from below is investigated.
The convective roll solutions are determined numerically for realistic boundary conditions with a many-mode
Galerkin expansion as well as with a finite-difference method. Bifurcation diagrams of various quantities like
Nusselt number, frequency, and mixing behavior are determined as functions of heating rate and wave number
for several through flow rates and Soret coupling strengths for ethanol-water parameters. The growth dynamics
of small convective perturbations into different, strongly nonlinear convective states and the transition between
the latter is studied also.

PACS number~s!: 47.20.2k, 47.10.1g, 47.27.Te, 47.54.1r
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I. INTRODUCTION

An externally imposed flow can change the spatiotem
ral behavior of dissipative structures in forced nonequil
rium systems such as chemical and reaction-diffusion s
tems, biological problems, and the large variety of differe
hydrodynamic pattern forming systems@1#. One example is
the stationary, toroidal Taylor vortices in the annular g
between concentric cylinders that in the presence of an a
through flow propagate in the downstream direction@2#.
Here the through flow enforces a finite phase velocity o
forwards bifurcating pattern. A situation with similar bifu
cation behavior occurs in a narrow rectangular convec
channel filled, e.g., with water that is heated from belo
Therein the convection rolls are aligned with their axes alo
the small side, say, in they direction. Here a small flow
through the channel in thex direction causes the transver
roll pattern to propagate downstream in thex direction@3–5#.
On the other hand, in a large through flow and/or in wid
channels, the through flow causes an orientation of the r
parallel to the through flow@4#.

While the investigation of heated shear flows of pure fl
ids has a long history—see, e.g., Ref.@6# for a review—we
are not aware of similarly numerous and extensive invest
tions of the influence of an imposed shear flow on convec
structures occurring in binary fluid mixtures such as, e
ethanol water@7#. This is somewhat astonishing since t
bifurcation behavior and the spatiotemporal properties of
convective structures that occur close to onset in mixtu
display a much larger variety than in pure fluids~@8#, see also
Refs.@9–17#!. One observes in mixtures not only stationa
roll convection—what we call for historical reasons statio
ary overturning convection~SOC!—as in pure fluids but also
symmetry degenerate left or right traveling wave~TW! pat-
terns. The bifurcation of both the stationary and the travel
roll structures can be either supercritical or subcritical. Th
in both cases the transition from the quiescent heat cond
ing state to the convective states after crossing a critical h
ing rate can be either continuous, i.e., of second orde
discontinuous and hysteretical, i.e., of first order depend
on parameters. Furthermore, there is a wide parameter r
PRE 611063-651X/2000/61~4!/3793~18!/$15.00
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where the primary bifurcating convective structures have
form of squares.

This richness of different convection phenomena in m
tures is due to the fact that the buoyancy, i.e., the driv
force for convection is influenced by concentration var
tions. They are generated via the Soret effect by tempera
gradients which sustain them against the action of advec
mixing and diffusive homogenization. The Soret coupli
between temperature and concentration field is measure
the separation ratioc @1#. Without Soret coupling,c50,
concentration deviations from the mean diffuse away. In t
limit the concentration does not influence the longtime b
havior of the mixture and one thus observes forc50 the
convective properties of a pure fluid. ForcÞ0, however, the
externally imposed vertical temperature difference across
fluid layer sustains concentration variations in balance w
the adverse effects of convective mixing and diffusion.

In this paper we investigate the effect of a horizontal P
seuille through flow on stationary and traveling wave co
vection that appear for negative Soret coupling in ethan
water-like mixtures. We deal here with spatially period
extended structures of straight transverse rolls with axes
ented perpendicular to the through flow that can be reali
in narrow convection channels. This investigation provid
the basis for an understanding of more complex structu
occurring in long convection channels with inlet and out
induced inhomogeneities and spatially varying amplitud
@18#.

Despite the restriction to patterns with spatially homog
neous amplitudes the bifurcation behavior of these structu
in the presence of through flow is surprisingly complex: T
through flow lifts, first of all, the mirror symmetry degen
eracy of left and right traveling waves concerning their line
as well as their nonlinear properties. Second, the thro
flow changes in a fundamental and spectacular way the c
nection and merging of the two symmetry degenerate T
solution branches with the SOC state that occurs with z
TW frequency in the absence of through flow when the fin
amplitude SOC undergoes with decreasing Rayleigh num
a drift instability with a left or right propagating phase.

Additional complexity comes from the fact that the SO
and TW solutions are strongly nonlinear—the advective n
linearity in the concentration balance is typically large co
3793 © 2000 The American Physical Society



s

ib
.

re
n
he
ra
ee
c

re
lle
p

tie
in
a
nt

f
ec

e

f

f

ffi
a

r of

e
er

-

that

the
e we

er

re

d.

cur-

cting
ef-
ge
the
om

t

ra-

o-

3794 PRE 61P. BÜCHEL AND M. LÜCKE
pared to the diffusive linear transport—with significant hy
teresis.

This paper is organized as follows: In Sec. II we descr
the system and our numerical methods for investigating it
review of the linear bifurcation properties as obtained from
linear stability analysis of the basic conductive state is p
sented in Sec. III. The influence of a through flow on no
linear bifurcation properties including an investigation of t
wave number dependence is contained in Sec. IV. The t
sient dynamics of growth, decay, and transitions betw
different TW types is investigated in Sec. V. The final se
tion, Sec. VI, gives a short summary and conclusion.

II. SYSTEM

We consider a horizontal layer of a binary fluid mixtu
such as, e.g., alcohol-water confined between two para
perfectly heat conducting and impervious plates. The setu
exposed to a homogeneous gravitational field,g52gez and
a temperature gradientDT5T lower2T upper between the
lower and upper confining boundaries. Unscaled quanti
are underlined to distinguish them from the scaled ones
troduced below. We investigate here convective flow p
terns of straight parallel rolls as seen in many experime
The rolls are aligned in, say, thex direction. Ignoring varia-
tions in y direction we thus describe two-dimensional~2D!
convection in anx-z plane perpendicular to the roll axes.

A. Field equations

The system is described by the balance equations
mass, heat, concentration, and momentum in Oberb
Boussinesq approximation@19,4#

052“•u, ~2.1!

] tT52“•Q; Q5uT2“T, ~2.2!

] tC52“•J; J5uC2L“~C2cT!, ~2.3!

] tu52“~u:u1p2s“:u!1B; ~2.4!

B5s Ra~T1C!ez .

Lengths are scaled with the heightd of the layer, time with
the vertical thermal diffusion timed2/k, and the velocity
field u5(u,0,w) with k/d. Here,k is the thermal diffusivity
of the mixture;T5(T2T 0)/DT denotes the deviation of th
temperature from the mean temperatureT 0 in the fluid
scaled by the temperature difference between the platesDT.
The field C5(C2C 0)b/(aDT) is the scaled deviation o
the mass concentrationC5r 1 /(r 11r 2) of the solute from
its meanC 0. Herer 1 andr 2 are the mass density fields o
the two components. For small deviations ofT andC from
their means the total mass densityr5r 11r 2 is governed
by a linear equation

r5r 0@12a~T2T0!2b~C2C 0!#, ~2.5!

with a, b being the thermal and solutal expansion coe
cient of the fluid, respectively. For ethanol-water mixtures
room temperaturea andb are positive@20#.
-

e
A
a
-
-

n-
n
-

l,
is

s
-

t-
s.

or
k-

-
t

The Lewis numberL is the ratio of concentration diffu-
sivity D and thermal diffusivityk, and the Prandtl numbers
is the ratio of momentum diffusivityn andk:

L5
D

k
; s5

n

k
. ~2.6!

For room temperatures (10– 40 °C), the Prandtl numbe
ethanol-water mixtures lies between 5 and 20@20#, while for
normal fluid helium it is ten or more times smaller. Th
Lewis number of liquid mixtures is about 0.01. In this pap
we take the fluid parametersL50.01 ands510 as represen
tative examples for ethanol-water mixtures.

The setup is characterized by three control parameters
can be varied independently.

~i! The Rayleigh number

Ra5
agd3

kn
DT ~2.7!

measures the externally imposed thermal driving due to
temperature gradient between the plates. For convenienc
use the scaled Rayleigh number

r 5
Ra

Rac
0

~2.8!

that is reduced by the critical Rayleigh number Rac
0 for onset

of convection in a pure fluid with the critical wave numb
kc

0 . The analytical values are Rac
051707.762 and kc

0

53.116 32.
~ii ! The lateral through flow driven by a lateral pressu

gradient defines the Reynolds number

Re5^u&z

d

n
, ~2.9!

where^u&z is the vertical average of the lateral velocity fiel
We consider in this paper a through flow in positivex direc-
tion with positive Reynolds number.

~iii ! The separation ratio

c52
b

a

kT

T 0
~2.10!

with the thermodiffusion ratiokT of the mixture reflects the
influence of temperature gradients on the concentration
rent J. For negative separation ratiosc, the imposed tem-
perature gradient causes in the quiescent heat condu
state an antiparallel concentration gradient via the Soret
fect. The resulting solutal contribution to the density chan
is opposite to the thermal contribution, thus weakens
buoyancy and stabilizes the heat conducting state. For ro
temperature ethanol-water mixtures,c values between abou
20.5 and10.2 can be easily realized experimentally@20#.
The Dufour effect that reflects the coupling of a concent
tion gradient into the heat currentQ can be discarded in
binary liquid mixtures@21,22#.

The buoyancy force (r2r 0)g due to density deviations
from the mean is the driving mechanism for convective m
tion. It enters into the momentum balance~2.4! via the buoy-
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PRE 61 3795INFLUENCE OF THROUGH FLOW ON BINARY FLUID . . .
ancy termB which follows from Eq.~2.5! after scaling. This
is the only place where density variations are retained in
Oberbeck-Boussinesq approximation. In the continuity eq
tion ~2.1!, the fluid has been assumed to be incompressi
i.e., the mass densityr is constant, and the mass current
proportional to the divergence-free velocity fieldu. Taking
the divergence of the Navier-Stokes equation~2.4!, one gets,
via the continuity equation, a Poisson equation for the pr
surep. The Poisson equation substitutes the continuity eq
tion and builds, together with Eqs.~2.2!–~2.4!, a complete
set of equations for the fieldsu, T, C, andp.

B. Boundary conditions

The rigid, impervious, and perfectly heat conducti
plates which define the horizontal boundaries of the fl
layer are located atz56 1

2 . As boundary conditions for ve
locity and temperature field one obtains

u5w50; T57
1

2
at z56

1

2
. ~2.11!

Due to the impermeability of the plates there is no conc
tration current through the plates,J"ez50, or

]zC5c]zT at z56
1

2
. ~2.12!

Since the pressurep is determined via the Poisson equati
by u,T,C, we do not need boundary conditions for it.

In the lateral direction we enforce periodic boundary co
ditions. All fieldsF5u,w,T,C,p are periodic

F~x,z;t !5F~x1G,z;t ! ~2.13!

with given periodicityG. For the discussion of the bifurca
tion scenario we will mainly focus on a lateral periodici
length ofG5l52 which refers to a wave number of the ro
patterns near the critical one but other wavelengths are
plored as well. This periodicity length is also close to t
values typically observed in experiments without late
through flow when an extended bulk regime of nonline
saturated, spatially uniform pattern amplitude exists. N
that imposing the periodicity length of one wavelength in o
two-dimensional system precludes some of the instabili
of large systems, e.g., the Eckhaus instability@23# and the
complex dynamical behavior found in three-dimensional
perimental setups@24–26,22#.

C. Conductive state

For small Ra and Re a laterally homogenous heat c
ducting state without convective vertical velocity is stable.
this basic state the velocity fielducond5U(z)ex is given by
the plane horizontal Poiseuille flow

U~z!5s ReP~z!5s Re 6S 1

4
2z2D . ~2.14!

The temperature and the concentration field of the basic s
arex independent and linear functions inz

Tcond52z; Ccond52cz. ~2.15!
e
a-
e,

s-
a-

d
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D. Numerical methods

The linear bifurcation properties discussed in Sec.
were obtained by solving the field equations after lineari
tion around the conductive state with a shooting method a
Ref. @27#. Here we briefly describe the two different metho
that we used to solve the fullnonlinearhydrodynamical field
equations.

On the one hand we integrated the partial differen
equations~2.1!–~2.4! using a modification of theSOLA code
that is based on the MAC method@28,29#. This is a finite-
difference method of second order in space formulated
staggered grids for the different fields with uniform spat
resolution. An explicit first-order Euler step in time was us
in the balance equations of heat~2.2! and concentration~2.3!
and a second order DuFort-Frankel scheme in time was u
in the momentum balance equation~2.4!. The Poisson equa
tion for the pressure field, which results from taking the
vergence of Eq.~2.4!, was solved iteratively using the artifi
cial viscosity method @29#. In the finite-differences
approximation of the field equations that is used in our MA
algorithm the threshold for onset of pure fluid convecti
@30# lies for our uniform discretization ofDx5Dz50.025 at
Rastab

0 51705(60.2%) for k5p. So, when presenting nu
merical results obtained with the above discretization,
reduce Rayleigh numbers with this threshold value. As
aside we mention that the discretization in Ref.@9# wasDx
5Dz50.05.

In addition we also used a many-mode Galerkin appro
mation scheme. Our mode expansion uses the mirror g
symmetry

F~x,z;t !56FS x1
l

2
,2z;t D ~2.16!

of roll patterns with spatially uniform amplitude with1 for
u,p and2 for w,T,C @31#.

The velocity field is then approximated by Chandrasek
functions @32# that fulfill the realistic no-slip horizontal
boundary conditions at the plates. For the vertical veloc
field one obtains the representation

w~x,z,t !5 (
n50

(
m51

@w2n11
m ~ t !e2 i (2n11)kx1c.c.#Cm~z!

1 (
n50

(
m50

@w2n
m ~ t !e22inkx1c.c.#Sm~z!.

~2.17a!

Lateral and vertical velocity fields are coupled via the con
nuity equation. For TW patterns there exists also a weax
independent meanflow in the lateral direction that is a
expanded in Chandrasekhar functions. The deviation of
temperature field from the conductive profile,u5T
2Tcond, is expanded in trigonometric series

u~x,z,t !5 (
n50

(
m51

@u2n
2m~ t !e22inkx1c.c.#A2 sin~2mpz!

1 (
n50

(
m50

@u2n11
2m11~ t !e2 i (2n11)kx1c.c.#

3A2 cos@~2m11!pz#. ~2.17b!
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Within the Galerkin method the impermeability conditio
~2.12! is conveniently ensured by using the combined fi
z5(C2Ccond)2cu instead of the concentration field. Th
auxiliary field obeys the boundary conditions]zz50 at
z56 1

2 . Thus, it is expanded as

z~x,z,t !5 (
n50

(
m50

@z2n
2m11~ t !e22inkx1c.c.#

3A2 sin@~2m11!pz#

1 (
n50

(
m50

@z2n11
2m ~ t !e2 i (2n11)kx1c.c.#

3A22dm,0 cos~2mpz!. ~2.17c!

The expansion of the velocity field in thex andz directions
was truncated atnu5mu53. Also the meanflow containe
three modes inz. However, theu as well as thez field were
expanded up tonu,z5mu,z519 to ensure a sufficient resolu
tion of concentration boundary layers.

Projecting the field equations forw, u, and z onto the
bases of the mode expansion~2.17! yields coupled ordinary
differential equations for the mode amplitudeswn

m(t), un
m(t),

andzn
m(t). For SOC solutions all mode amplitudes are co

stant in time and can be chosen to be real. In a relaxed
however, with constant oscillation frequencyv and phase
velocity vph5v/k the complex mode amplitude of a later
Fourier mode,e2 inkx, oscillates with frequencynv. To solve
the coupled equations for the mode amplitudes we us
Newton-Raphson technique with backtracking. We ite
tively adjust the mode amplitudes and the oscillation f
quency of a TW for fixed control and fluid parameters sta
ing from given initial values. To follow the bifurcation
branches it was sometimes more convenient to iterativ
adjust the Rayleigh numberr for given convective amplitude
w1

1.

E. Order parameters

To characterize the convective solutions we use differ
order parameters:

~i! The Nusselt number

N5
1

GE0

G

dxQz ~2.18!

is the total vertical heat current through the fluid lay
*0

GdxQz , reduced by the conductive part,*0
GdxQcond5G. In

our scaling,Qcond51 . The reduced vertical heat curre
carried by convection alone,N21, is a measure of the con
vective flow intensity.

~ii ! To characterize the concentration field in the nonlin
convective states we use the mixing parameter

M5A^C2&/^Ccond
2 &, ~2.19!

which measures the size of concentration variations:M is the
variance of the concentration field reduced by its value in
conductive state. Here, brackets imply a spatial average
the whole fluid volume. In a perfectly mixed mixture whe
all concentration deviationsC from the mean vanish,M
-
,

a
-
-
-

ly

t

,

r

e
er

would be zero. On the other hand, in the conductive s
with Soret-induced concentration gradient,M is defined to be
1.

~iii ! TW states are characterized by their oscillation f
quencyv which, by the way, is very closely related to th
size ofM @33#.

III. LINEAR BIFURCATION PROPERTIES

In this section we briefly review the influence of throug
flow on linear bifurcation properties of different convectiv
patterns@27#. We focus here our interest on small Reynol
numbers. For sufficiently large Re, the lowest relevant bif
cation threshold of binary mixtures with anyc asymptoti-
cally approaches the critical Rayleigh number of pure flu
convection@27# since in this limit the externally impose
shear flow effectively eliminates the Soret-induced coupl
effects between the convective concentration field and
other fields by suppressing vertical convective transport
Soret driven concentration perturbations.

A. Stability analysis of the basic state

For a linear stability analysis of the basic state one c
siders the field equations

~] t2s¹2!¹2w1~U¹22]z
2U !]xw

5Ras~]x
21]y

2!@~11c!u1z#, ~3.1a!

~] t2¹21U]x!u5w, ~3.1b!

~] t2L¹21U]x!z52c¹2u, ~3.1c!

which are linearized in the small deviationsw,u, andz from
the conductive state. The fields are laterally Fourier deco
posed

F~r ,t !5F̂~z!ei (kxx1kyy)est ~3.2!

with a complex characteristic exponent

s5Res1 i Im s5g2 iv ~3.3!

and complexz-dependent amplitudes of the perturbations

F̂5~ŵ,û,ẑ !. ~3.4!

Inserting the ansatz~3.2! into the field equations~3.1! one
obtains a 333 system of ordinary differential equations fo

F̂(z) that are nonautonomous in the presence of thro
flow @27#. Due to the boundary conditions the eigenval
spectrum is discrete. We are interested in the three cha
teristic exponentssj ( j 51,2,3) whose temporal growth rate

g j are closest to zero and whose eigenfunctionsF̂ j (z) have
no nodes other than those at the horizontal boundaries.

The horizontal wave vectork of the perturbation~3.2! and
the through flow Reynolds number Re enter into Eq.~3.1!
only ask25kx

21ky
2 andkx Re. Therefore, one can invoke th

Squire transformation@34#

f ~kx
21ky

2 ,kx Re!5 f ~k2,k Re cosw! ~3.5!



-
r
tu

or
,

h

in
o

ur

tio
i-

av
re

cy
oin

on

,

ns

ith

e
y
e

es

cou-
ta-

n
r

y
of
am
ey

ers
e
ers

gh

ult

,

a-

ga-
s

PRE 61 3797INFLUENCE OF THROUGH FLOW ON BINARY FLUID . . .
with w denoting the inclination angle of the roll axes com
pared to the direction of the imposed through flow. Fo
complete stability analysis one has to consider only per
bations with wave vectorsk5kxex which are parallel or an-
tiparallel to the through flow direction. The linear behavi
of other types of rolls withwÞ0,p, e.g., longitudinal ones
can be extracted with Eq.~3.5! by rescaling the through flow
Reynolds number with cosw @27#. In the absence of throug
flow, Re50, the Squire transformation~3.5! reflects the hori-
zontal rotational symmetry of the system.

B. Absence of through flow

The stability properties of the conductive state against
finitesimal convective perturbations in the absence
through flow have been discussed in detail in the literat
@35,36,38,37#. For c above ~below! the tricritical value
cSOC

t 52O(1027) @37#, the SOC bifurcation is forwards
~backwards!. However, belowcSOC

` 52L/(11L) @39,40#
where the stationary thresholdr stat diverges, the lower SOC
solution branch is disconnected from the conductive solu
for positive r @41#. In addition, there exists for strong stab
lizing Soret coupling a Hopf bifurcation threshold atr osc
where symmetry-degenerated left and right traveling w
solutions branch out of the conductive state. The Hopf f
quency,vH , varies asvH

2 '2449c/(11c11/s) @42,43#.
For c above~below! the tricritical valuecTW

t 52O(1024)
@37,44# the TW bifurcation is forwards~backwards!. The bi-
furcation thresholdsr stat and r osc become equal at the
codimension-two valuecCTP52O(1025) with slightly dif-
ferent critical wave numbers and a small Hopf frequen
For a more detailed discussion of the codimension-two p
see, e.g., Refs.@35–38,45,46#.

C. Notation

Instead of numbering the three different bifurcati
thresholds and bifurcating convective solutions of the 333
eigenvalue problem~3.1! in the presence of through flow
Re.0, we use henceforth superscriptsS, U, D. They identify
the behavior of critical perturbations,ei (kcx2vct), in the limit
Re→0. Eigenvalues for whichvc(Re→0)50 are marked
by S, since these perturbations are stationary for Re50. Ei-
genvalues for whichvc(Re→0) is positive~negative! carry
the superscriptD (U), since they characterize perturbatio
which propagate in downstream~upstream! direction for Re
→0. Thus, the casesS ~‘‘stationary’’!, D ~‘‘downstream’’!,
andU ~‘‘upstream’’! characterize the perturbations and w
it the bifurcating nonlinear solutions in the limit Re→0. For
convenience we use this notation also in the absence
through flow, Re50. ThenD(U) identifies a TW where the
phase is propagating to the right~left! with frequencyvD

.0 (vU,0).
Finally we should like to draw attention to the fact that w

distinguish the propagation direction of different TW’s b
their frequency not by their wave vector—we only consid
positivekx5k in this work.

D. Through-flow-induced symmetry breaking
of the oscillatory instability

We briefly review in this subsection the critical properti
of a binary mixture such as ethanol water withc520.25 as
a
r-

-
f
e

n

e
-

.
t

of

r

a representative case for moderately negative Soret
plings. In the absence of through flow, the threshold of s
tionary convection has already disappeared sincec.cSOC

`

52L/(L11). There exists only the Hopf bifurcatio
threshold atr osc51.3348 for symmetry degenerate left o
right propagating TW’s with the critical Hopf frequenc
vH511.2125. Finite through flow breaks the symmetry
the two TW patterns and different, up- and downstre
propagating TW’s bifurcate out of the conductive state. Th
will be referred to as TWU~traveling wave upstream! and
TWD ~traveling wave downstream!.

The relative difference between the critical wave numb
kc

D and kc
U of the D and U waves, repectively, is not mor

than a few percent for the mixtures and Reynolds numb
considered here. The critical frequenciesvc

D and vc
U are

practically linear functions of Re. They start at zero throu
flow with the Hopf valuesvH and 2vH , respectively, and
they can be very well approximated by the first-order res
of a low-Re expansion@27#

vc
D,U56vH141.9 Re. ~3.6!

The rate of change]vc /] Re'41.9 also holds for other
separation ratios@27# including the pure fluid case@47# as
can be seen in Fig. 1~b!.

Note that for Re>vH/41.9 both critical frequencies
vc

D and vc
U , as well as the phase velocitiesvph

D,U

5vc
D,U/kc

D,U are positive. Then both critical waves prop

FIG. 1. Through flow dependence of critical properties for ne
tive Soret couplingc. In ~a! we show the bifurcation threshold
r c

U ,r c
D , and r c

S and in ~b! the critical frequenciesvc
U ,vc

D , andvc
S

for the three propagating wave solutionsU ~full lines!, D ~dashed
lines!, andS ~thin dotted lines!. Thick dotted lines refer to the pure
fluid, c50. Parameters areL50.01,s510.



w-
t

h
o
i

ly

fte

ar

w
th
v

es

er
m

u
io

pe

er
W

,

n
te

r

the

lly
on
e-

sta-
the
ting
-

igh
t
ncy

the
a-

of
et
Fi-
rs is
ters
ode

-

de

hat

er

ith
o

in
e-
ng
ous

3798 PRE 61P. BÜCHEL AND M. LÜCKE
gate in through flow direction in the laboratory frame. Ho
ever, vph

U is always smaller—by abou
2vH /kc(Re50)—than vph

D . Only for Re<vH/41.9 the
phase velocity,vph

U , is negative and opposite to the throug
flow. So, the wording ‘‘upstream traveling waves’’ does n
necessarily imply that the phase velocity of such a TW
negative in the laboratory frame. It would be negative in
frame moving in through flow direction with a convenient
defined mean lateral velocity such as, e.g.,v̄5 1

2 (vph
U 1vph

D ).

E. Bifurcation thresholds at negativec

Here we discuss the bifurcation thresholdsr c
U ~full lines!,

r c
D ~dashed lines!, andr c

S ~dotted lines! as functions of Re for
a few characteristic negative Soret couplings as shown
Fig. 1~a!.

1. rc
U(Re,c)

With increasing through flow ratesr c
U @full lines in Fig.

1~a!# decreases for small Re, develops a minimum close
where vc

U goes through zero, steeply increases therea
and finally flattens asymptotically for any Soret couplingc
towards the Re-dependent pure fluid stability bound
r c(Re,c50) at large Re. The flattening ofr c

U can be seen in
Fig. 1~a! only for the weaker Soret couplingc520.01.
With increasing Soret strength the flattening ofr c

U towards
r c(Re,c50) shifts to larger and larger Re@27# outside the
plot range of Fig. 1. Thus a sufficiently large through flo
eliminates the Soret induced coupling effects between
concentration field on one side and the temperature and
locity field on the other side. For smallc, e.g., at
c520.001, the stability boundaryr c

U lies always belowr c
D

while for largerucu there are two intersections of the curv
r c

U andr c
U with r c

D<r c
U in between@27#. Note, however, that

the bicritical TWU and TWD perturbations cannot be sup
imposed linearly to a standing wave, since their wave nu
berskc

UÞkc
D differ, and furthermorevc

UÞ2vc
D . So, in the

Re-interval between the intersections ofr c
U and r c

D down-
stream propagating convection waves grow first while o
side this interval at small Re and large Re TWU convect
bifurcates first out of the conductive state.

2. rc
D(Re,c)

The bifurcation thresholdr c
D @dashed lines in Fig. 1~a!#

always increases monotonically with Re. The initial slo
]r c

D/] Re increases somewhat with decreasingucu. For
c520.01 the stability curvesr c

D and r c
S collide in the Re

range displayed in Fig. 1. For higher through flow rates th
opens up a wave number gap where neither TWD nor T
perturbations can grow@27,48,18#.

3. rc
S(Re,c)

For pure fluid convection,c50, the bifurcation threshold
r c(Re,c50) @thick, dotted curve in Fig. 1~a!# slightly in-
creases with growing Re@6#. In the absence of through flow
r c

S rapidly increases withucu and diverges atcSOC
`

52L/(L11). Beyond this Soret coupling the solutio
branch of stationary nonlinear convection is disconnec
from the basic state asr c

S(Re50,c<cSOC
` )5`. A small but
t
s
a

in

to
r,

y

e
e-

-
-

t-
n

e
S

d

finite through flow, however, moves the thresholdr c
S down to

finite values: The dotted curve forr c
S of Fig. 1~a! for c5

20.01,cSOC
` shows ~i! that r c

S5` below a finite Rè
.0.019,~ii ! that r c

S is finite for Re. Rè , and~iii ! that r c
S

steeply drops down for Re.Rè @27#. The Reynolds numbe
Rè wherer c

S diverges grows with increasingucu—a stron-
ger Soret coupling requires a larger through flow to move
bifurcation thresholdr c

S from infinity to a finite value.

IV. NONLINEAR BIFURCATION BEHAVIOR

In this section we discuss the influence of an externa
imposed lateral through flow on the nonlinear bifurcati
behavior of tranverse convective rolls of a given lateral p
riodicity length G5l52 in mixtures with buoyancy-
reducing negative Soret effect. The through flow causes
tionary patterns to propagate and furthermore lifts
symmetry degeneracy between left and right propaga
TW’s at Re50. The right~left! propagating wave with posi
tive ~negative! frequency at Re50 becomes a TWD~TWU!
in the presence of through flow. Not only the onset Rayle
number and initial frequency of TWD and TWU differ bu
more importantly the symmetry degenerate zero-freque
merging of the two TW’s with the SOC occurring at Re50
is dramatically changed by the through flow. To elucidate
influence of a through flow we first review a typical bifurc
tion diagram forc520.25 at Re50 determined with the
finite-differences MAC algorithm withDx5Dz50.025. In
the second part of this section we discuss the variation
bifurcation behavior and field structure for different Sor
coupling strengths with increasing through flow rates.
nally the wave number dependence of the order paramete
presented. For finite through flow rates all order parame
presented in Figs. 2–8 are determined with the many-m
Galerkin method with a mode truncation ofnu,z5mu,z519
andnu5mu53 for the velocity field as well as for the mean
flow.

A. Bifurcation behavior in the absence of through flow

In the left column of Fig. 2 we show ther dependence of
mixing parameterM, frequencyv, and Nusselt numberN
21 of the convective states with spatially uniform amplitu
and wavelengthl52 in a mixture with parameters Re50,
L50.01,s510,c520.25@9,10#. These diagrams display in
a representative way the subcritical bifurcation topology t
is typical for sufficently negative Soret couplingc. The dot-
ted line in Fig. 2~c! gives for comparison the Nusselt numb
of SOC in a pure fluid,c50.

The conductive state becomes unstable atr osc51.3348.
Just abover osc the system does not saturate in a state w
small convective amplitude as in a pure fluid. Here tw
strongly nonlinear, symmetry degenerate TW’s oflarge am-
plitude are stable above threshold. For simplicity we refer
this section to right propagating waves with positive fr
quency only. But their mirror images, the left propagati
waves with negative frequency, are meant in an analog
way as well.
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The nonlinear TW state atr osc has a frequency of only
about 1

10 vH . When reducing the driver the TW frequency
increases up to about1

3 vH at the saddler S
TW.1.206. Below

this saddle the system undergoes a transition to the con
tive state. The reason for the associated discontinuous o
of convection is a nonlinear feedback: Forc,0, the Soret-
induced conductive concentration distribution weakens
buoyancy. Convection, on the other hand, redistributes
alcohol more evenly, thereby reducing the adverse Sore
fect and thus increasing the buoyancy much more stron
than the flattening of the vertical temperature profile in
bulk decreases the buoyancy. The increased buoyancy in
strengthens convection, which again amplifies the buoya

With increasingr the TW frequency decreases to zer
until there is a continuous transition atr * to SOC. For larger
r one obtains stable SOC states. The transition atr *
.1.427 between the TW branch@solid lines with upwards
~downwards! pointing, filled triangles for left~right! travel-
ing waves in Fig. 2# and the SOC branch~solid lines with
filled squares in Fig. 2! is smooth and nonhysteretic. Viewe
from the stable SOC branch abover * , we have with decreas

FIG. 2. Influence of lateral through flow on bifurcation prope
ties of transverse roll convection. Shown are from top to bott
mixing numberM, frequencyv, and Nusselt numberN21 versus
reduced Rayleigh numberr in the absence of through flow, Re50
~left column!, and in the presence of a small through flow, R
50.025~right column!. Full ~dashed! lines with filled ~open! sym-
bols denote stable~unstable! solutions. Right propagating TW’s a
Re50 and TWD’s at Re50.025 are shown by lines with down
wards pointing triangles. Left propagating TW’s at Re50 and
TWU’s at Re50.025 are shown by lines with upwards pointin
triangles. The SOC solution that exists only at Re50 is shown in
the left column by lines with squares. TWD and TWU saddles
finite through flow are identified byD, U1, U2, U3, respectively,
in ~e!. Dotted lines in~c! and ~f! refer to pure fluid convection,c
50. Parameters areL50.01, s510, c520.25, k5p.
c-
set

e
e
f-
ly
e
rn
y.
,

ing r a drift instability associated with a symmetry-breakin
forward bifurcation to left or right traveling waves.

The unstableupper SOC branch with the larger Nusse
number@dashed line with open square in Fig. 2~c!# can be
stabilized below r * down to the SOC saddle atr S

SOC

.1.078 by enforcing a pinning of the phase by imposing
conditionu(x,z;t)50 at x50,G. So, in our short system o
lengthG52 the roll pair cannot travel. In somewhat long
systems, however, this pinning is not sufficient to prev
TW’s in the bulk, as has been seen in simulations of a sys
of lengthG510 @49# and similarly in experiments@50–53#.
Furthermore, we have stabilized also the unstablelower bi-
furcation branches of SOC and TW solutions@dashed lines
with open symbols in Fig. 2~c!# with smaller Nusselt num-
bers by using an adaptive control mechanism in the M
simulations@33#.

The Nusselt numbers of TW and SOC states typically
just below the values for a pure fluid@dotted line in Fig.
2~c!#. Only near the saddles there are stronger deviatio
That our SOC and TW states are closer to SOC states
pure fluid than to the conductive state of the mixture is
flected also in the mixing parameterM @Fig. 2~a!# of the
concentration field. Convective mixing of stable SOC p
terns dramatically reduces concentration variations toM
.0.1 with a slight increase at the saddle. The convec
homogeneization of concentration, measured in terms ofM,
is more efficient by a factor of 3.5 in SOC states than in
TW at its saddle.

Note that the curve ofMTW @lines with triangles in Fig.
2~a!# has the same form as that ofv versusr in Fig. 2~b!. In
fact, TW frequency and TW concentration variations a
closely linked together—MTW.v/vH for not too smallv
@33#.

B. Phase dynamics near the drift instability

In the absence of through flow the transition from SOC
r>r * to TW states atr ,r * is a drift instability. To eluci-
date and to understand how the through flow influences
transition we also used an extension of a few-mode Gale
model @54# for SOC and TW convection to the case
through flow. From this model we derive coupled equatio
for the phases of the relevant modes. These phase equa
allow in particular to explain the change of the bifurcatio
diagrams ofv versusr close tor * from the pitchfork topol-
ogy in Fig. 2~b! to a shifted, imperfect bifurcation in Fig
2~e! to be a result of the through flow perturbation: It brea
the left-right symmetry and in addition causes an upw
shift of the phase velocities, i.e., the frequencies of the t
traveling waves.

The few-mode Galerkin model@54# is based on the field
truncation

w~x,z,t !5@w11~ t !e2 ikx1c.c.#cos2~pz!, ~4.1!

T~x,z;t !52z1T02~ t !A2 sin~2pz!

1@T11~ t !e2 ikx1c.c.#A2 cos~pz!, ~4.2!



rc

s

xe

e
u

er

e

r

r

ase
n-
d the
ow-
of

li-

de

ns

en-

to
ce-

be

-

he
s in
e-
e-
r-

Re
t

il-

ugh

3800 PRE 61P. BÜCHEL AND M. LÜCKE
C~x,z,t !52c„$112pA2@c02~ t !22c04~ t !#%z

1c02~ t !A2 sin 2pz1c04~ t !A2 sin~4pz!

1@c10~ t !e2 ikx1c.c.#A2

1@c12~ t !e2 ikx1c.c.#

3A2 cos~2pz!…. ~4.3!

This field representation was shown to describe the bifu
tion properties of TW and SOC rolls at Re50 quite well
@54#. For k5p, we write the complex mode
w11,T11,c10,c12 in polar form

8

5p2
w115XeifX,

6pA2

5
rT115YeifY

32A2

5
rc105U1eifU1,

32A2

5
rc125U2eifU2 ~4.4a!

with the same scaling coefficients as in Ref.@54#. The modes

6pA2

5
rT025Z,

256A2

15p
rc025V1 ,

256A2

5p
rc04V2

~4.4b!

are real. For SOC patterns the fields have common fi
phases, fX5fY5fU1

5fU2
, and the amplitudes

X,Y,Z,U1 ,U2 ,V1 ,V2 are constant in time. Also in a TW th
field amplitudes are constant in time. However, the fo
phases increase in time with a common rate] tf5v given
by the TW frequency in such a way that the phase diff
ences

a5fX2fY , b5fX2fU1
, g5fX2fU2

~4.5!

are constant in time.
Inserting the mode representations~4.4! into the model

equations of Ref.@54# one obtains coupled equations for th
amplitudes X,Y,Z,U1 ,U2 ,V1 ,V2 and the phases
fX ,fY ,fU1

,fU2
. Rewriting the latter in terms ofw5fX

and the phase differences~4.5! one finally has

t

s̃
ẇ52

Y

X
sina1acFU1

X
sinb1

U2

2X
singG2

b

s̃
Re,

~4.6a!

tȧ5tẇ2~r 2Z!
X

Y
sina1c Re, ~4.6b!

tḃ5tẇ1F r 1
5a

2 S V12
4

9
V2D G X

U1
sinb1S d1e

U2

U1
DRe,

~4.6c!

tġ5tẇ1F r 1
10a

3 S V12
1

6
V2D G X

U2
sing1S f 1e

U1

U2
DRe

~4.6d!
a-

d

r

-

with s̃5 27
14 s, t51/2p2, a59p2/128. The terms in front of

the Reynolds number Re come from the extension@18# to
finite through flow. Their effect will be discussed furthe
below.

1. Absence of through flow

We consider first Re50. One first of all sees that fo
phase differencesa5b5g[0 one hasẇ50, i.e., the SOC
state. Traveling waves can exist only for nonvanishing ph
differences. In the immediate vicinity of the SOC-TW tra
sition the phase differences are small and one can expan
equations for mode amplitudes and phase differences in l
est order ofa,b,g. Then, the mode amplitudes are those
the SOC states, i.e., constant, and Eqs.~4.6! describe for
Re50 a drift instability in a way that resembles the amp
tude equation description of a drift instability by Fauveet al.
@55#. Here, in our case the SOC fixed point of the few-mo
Galerkin model loses stability atr * and immediately below
r * a drifting pattern with finitea,b,g and finite v25ẇ2

}(r * 2r ) is stable@54#. Thus, the curvev versusr under-
goes a pitchfork bifurcation atr * . However, due to the
smallness of the Lewis number the phase differencesb and
g grow rapidly withv. Already for very small frequenciesb
andg reach values aroundp/2, whereasa remains small.

2. Through-flow-induced imperfection

Incorporating the through flow into the field equatio
give rise to the Re terms in Eqs.~4.6! with constant coeffi-
cientsb,c,d,e, f . With free-slipboundary conditions for the
velocity field at the plates one obtainsb5c5d5 f , and the
coupling coefficiente betweenU1 and U2 vanishes due to
the orthogonality relation of the mode ansatz for the conc
tration field. In this free-slip case, thez-independent through
flow leads only to a frequency shift which is proportional
the through flow rate Re. But otherwise the bifurcation s
nario remains unchanged since the free-slip plug flow can
compensated by a Galilei transformation.

Enforcing realisticno-slipboundary conditions for the ve
locity field at the plates, the Poiseuille profileP(z) leads to
different values ofb, c, d, andf, and in addition there exists
an off-diagonal coupling,eÞ0, betweenU1 andU2. There-
fore the effect of through flow cannot be scaled out of t
equations via a Galilei transformation, and one observe
addition to a frequency shift an imperfection of the fr
quency bifurcation. Both effects can be qualitatively d
scribed as resulting from a shifted, imperfect pitchfork bifu
cation

05~r !2r !~v2a1 Re!2a2~v2a1 Re!31a3 Re.
~4.7!

C. Bifurcation behavior in the presence of through flow

Here we discuss how the through flow changes the
50 bifurcation topology globally. To that end we firs
present in the right column of Fig. 2 the influence of asmall
through flow, Re50.025, on the bifurcation diagrams forc
520.25. In Sec. III E we have investigated the linear stab
ity thresholdsr c

S , r c
D , and r c

U for TWS, TWD, and TWU
perturbations, respectively. Since in the presence of thro



t

w
tio
ch
n-
te

O
al
d

-
W

-

tin
n

h

e
ne

th

2
he

es

a
pe
h
ou

hly

’s

he

ol-

is
w
de

’s,

ive
om-
ter
g

m-

s,

and

ugh
ion

r
ble

Re
nd,

o

f

’s
us-
f the
r

PRE 61 3801INFLUENCE OF THROUGH FLOW ON BINARY FLUID . . .
flow the bifurcation branches starting from eitherr c
D or r c

U

are connected at larger with r c
S for vanishing convective

amplitude~or extend with small amplitude tò when r c
S is

infinite!, we will discard the superscriptS to guarantee tha
there is no ambiguity and use only the superscriptsD andU.

1. TWD’s

A through flow causes SOC patterns to propagate do
stream. Thus the through flow transforms the SOC solu
branch and with it the former SOC-TW transition: the bran
of right propagating TW’s with positive frequency joins co
tinuously with the branch of downstream propagating sta
that evolves with increasing Re out of the former stable S
branch forr .r * . In accordance to the linear results we c
this branch the TWD branch. It is marked by downwar
pointing triangles in the right-hand column of Fig. 2.

The TWD solution branch forM, v, andN21 contains
one saddle@marked by the letterD in the v2r bifurcation
diagram of Fig. 2~e!#. There the TWD solution being un
stable at onset becomes stable. Take for example the T
frequency curve in Fig. 2~e!. It starts out at the stability
threshold r stab

D —being for k5p and small Re only very
slightly above the Re50 thresholdr osc— with a frequency
at onset,vstab

D , which is slightly throughflow enhanced rela
tive to the Re50 counterpartvH ~cf Fig. 1!. Following the
TWD solution branch v drops continuously to the
asymptotic valuev.1 at large r far beyond the old
SOC-TW transition atr * . This asymptotic frequency is
given by the phase velocity of the downstream propaga
former SOC pattern. Similarly the other TWD bifurcatio
curves forM and N21 join smoothly at larger with the
branch that has evolved out of the former SOC solution. T
‘‘downstream propagating SOC’’ at larger resembles
strongly the one that one observes in a pure fluid,c50, with
lateral through flow: The TWD Nusselt number approach
at larger thec50 Nusselt number marked by the dotted li
in Fig. 2~f!.

2. TWU’s at small Re

When switching on a~small! through flow the solution
branch of left propagating waves that bifurcates out of
conductive state with negative frequency,v52vH , evolves
into the TWU solution marked in the right column of Fig.
by lines with upwards pointing triangles. It starts out at t
TWU stability thresholdr stab

U —being fork5p and small Re
only very slightly below the Re50 thresholdr osc—with a
frequency at onset,vstab

U , which is slightly larger than its
Re50 counterpart~c.f. Fig. 1!. Proceeding in Fig. 2 from the
TWU onset along the TWU solution branch it becom
stable at the saddle marked byU2 in Fig. 2~e! and located at
r S2

U .1.2. It remains stable until the saddleU3 located at
r S3

U .1.27. There, the stable TWU solution connects with
unstable solution that has evolved out of the former up
unstable SOC branch with larger Nusselt number. T
saddle connection evolves with increasing through flow
of the v50 merging at Re50 of the left propagating TW
with the SOC atr * . To summarize: for small Re thestable
TWU connects atU3 with theunstableformer SOC branch
at r ,r * . On the other hand, thestableTWD solution that
n-
n

s
C
l
s

D

g

is

s

e

n
r

is
t

evolves out of the right propagating TW connects smoot
to thestableformer SOC solution atr .r * .

With increasing Re the saddlesU3 andU2 collide, and
one is left then with a solution branch of unstable TWU
having the saddleU1 only. This saddleU1 located in the
right column of Fig. 2 atr S1

U .1.08 originates from the
former SOC saddle atr S

SOC.1.078 in the left-hand column
of Fig. 2. Hence its location is not much influenced by t
through flow of Fig. 2.

The TWU frequency increases monotonically when f
lowing the TWU solution branch from onset atr stab

U to its
large-r asymptote. The asymptotic TWU frequency of th
unstable, small-amplitude traveling wave is slightly belo
the asymptotic frequency of the stable, large-amplitu
TWD at larger far beyond the old TW-SOC transition.

The Nusselt number differences between TW’s, TWU
and TWD’s@Fig. 2~c! and Fig. 2~f!# are small. In accordance
to the model of Hollingeret al. @54# larger oscillation fre-
quencies of TWD’s are associated with smaller convect
amplitudes and therefore with smaller Nusselt numbers c
pared to those of TWU’s. Comparing the mixing parame
M @Figs. 2~a! and 2~d!# one observes for TWU’s a stron
increase inM nearr S3

U .

3. Hysteresis by changing r and Re

In the presence of through flow there arise different co
binations of existence ranges of TW’s. There is anr range
where only TWU’s are stable,r S2

U <r ,r S
D , and anr range

where only TWD’s are stable,r S3
U <r . For c520.25 and

Re50.075 the range@r S2
U ,r S3

U # of existence of stable TWU’s
is separated from the range of existence of stable TWD’r
.r S

D . In between there arises a smallr regime where neither
TWD nor TWU states are stable.

For Re50 only a hysteresis between the basic state
convective states exists forr S

TW,r ,r osc if one increases or
decreases the Rayleigh number. In the presence of thro
flow there exists an additional hysteresis of TW convect
for a combined change ofr and Re. For Re50.075 one has
r S3

U ,r S
D for c520.25; in between this interval neithe

TWD’s nor TWU’s are stable. Consider as a start the sta
TWU at r .1.25, Re50.025. If one now first reducesr to r
.1.20 and then increases the Reynolds number to
50.075 one still observes a stable TWU. On the other ha
if one first increases the Reynolds number to Re50.075 one
causes a transition TWU→TWD. This TWD state then be-
comes unstable when reducing the Rayleigh number tr
.1.20. In this case only the basic state is established.

4. Dependence onc and Re

In Figs. 3 and 4 oscillation frequencyv, mixing param-
eterM, and Nusselt numberN21 are shown as functions o
r for increasing through flow rates (Re50, 0.05, 0.1, 0.25!
and three different Soret coupling strengths (c520.01,
20.1, 20.25!.

With increasing through flow the frequency of TWD
increases. In addition the convective amplitude and the N
selt number decreases whereas the Rayleigh number o
TWD saddle,r S

D , increases. The TWD bifurcation behavio
described in Sec. IV C 1 forc520.25, Re50.025 remains
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qualitatively unchanged at other Soret couplingc or other
through flow rates. This is most easily seen from the fact t
the bifurcation topology of the dashed TWD curves in Fig
3 and 4 is the same as that of the respective TWD solut
~lines with downwards pointing triangles! in the right col-
umn of Fig. 2.

A growing through flow shifts the TWU saddleU3 to-
wards smallerr, thus reducing the range of existence
stable TWU’s further and further. Forc520.25 and Re
50.01 one still sees theU3 saddle atr S3

U ,r c
U . In addition

r S2
U is shifted to smallerr-values with increasing throug

flow rates. At Re.0.08 the saddlesU2 andU3 merge and
the range of existence of stable TWU’s disappears
c520.25.

Consider now the separation ratioc520.01: At Re
50.1 one hasr stab

D ,r stab
U @see Fig. 1~a! for the critical

thresholds#. Then, with increasing through flow rates bo
stability thresholds cross and finally one obtainsr stab

U

,r stab
D at large Re. Between Re50.10 and Re50.25~Fig. 4!

the former TWU branch, connectingr stab
U with r stab

S , trans-
forms into a TWD branch indicated by a change in the lin
style in the figures. For Re50.25 the unstable TWD branc
~dashed line in Fig. 4! starting from the onsetr stab

D .1.05
folds back to the basic state atr stab

S .1.47. At Re50.5 the
linear thresholdsr stab

D and r stab
S have already disappeare

@see also Fig. 1~a!#. The whole TWD branch vanishes, an

FIG. 3. Influence of lateral through flow on bifurcation prope
ties of roll convection for different Soret coupling strengthsc as
indicated. Shown are, from top to bottom, mixing numberM, fre-
quencyv, and Nusselt numberN21 versus reduced Rayleigh num
ber r at Re50 ~left column! and at Re50.05 ~right column!. Right
propagating TW’s at Re50 and TWD’s at Re50.05: dashed lines
TWU’s at Re50.05: full lines. SOC at Re50: thin, dotted lines.
Nusselt numbers in pure fluids (c50): thick, dotted lines. The
stability of the solutions can be inferred from Fig. 2 using the f
that it changes at the saddles. Parameters areL50.01, s510, k
5p.
at
.
s

f

r

-

one only observes TWU solutions starting fromr stab
U , which

are now again stable for Rayleigh numbers above the un
saddler S

U .

D. Wave number dependence

So far we have investigated in this Sec. IV patterns w
wave numberk5p. However, in experiments using narro
convection channels with large aspect ratios,G@1, different
convective patterns of spatially uniform amplitude with d
ferent wavelengths are possible. We therefore elucidate
the wave number dependence of the order parameters
and discuss our main results for such patterns of spati
uniform amplitude.

1. Absence of through flow

In Fig. 5 the bifurcation branches of the Nusselt numb
of TW and stable SOC states are plotted for Re50 and equi-
distantly spacedk. These curves were determined with o
many-mode Galerkin scheme described in Sec. II D. The
furcation surface ofN21 over ther 2k plane branches ou
of the latter at the marginal stability curver stab

TW (k) ~thick full
line in Fig. 5! whereN21→0. This threshold for onset o
convection increases whith increasing deviation of the w
number fromkc

TW . The thick dotted line connects the saddl
r S

TW(k). They also move to largerr for larger and smaller
wave numbers compared to a minimum value close tokc

TW .

t

FIG. 4. Influence of lateral through flow on bifurcation prope
ties of roll convection for different Soret coupling strengthsc as
indicated. Shown are, from top to bottom, mixing numberM, fre-
quencyv, and Nusselt numberN21 versus reduced Rayleigh num
ber r at Re50.1 ~left column! and at Re50.25 ~right column!.
TWD’s: dashed lines; TWU’s: full lines; Nusselt numbers in pu
fluids (c50): thick, dotted lines. The stability of the solutions ca
be inferred from Fig. 2 using the fact that it changes at the sadd
Parameters areL50.01, s510, k5p.
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All in all, the surface of the order parameterN(r ,k)21 in
Fig. 5 resembles that of a nose.

To discuss the wave number dependence of the order
rameters we present in Fig. 6 cuts through the surface
N(r ,k), v(r ,k), andM (r ,k) at constantr values. For orien-
tation we show in Fig. 6~a! the marginal stability curve
r stab

TW (k) ~thick line! and the position of the saddler S
TW(k)

~dotted line! for zero through flow. The hysteresis rang
r stab

TW (k)2r S
TW(k), of TW’s has a nearlyk independent width

and moves to higherr values whenuk2kc
TWu increases.

In the hysteretical region,r S
TW<r ,r stab

TW , the bifurcation
branches taken at fixedr as functions ofk are closed in itself.
Stable and unstable branches are joined together at the s
r S

TW(k) ~dotted lines in Fig. 6! at a small and a large wav
number. At these saddle connections one observes st
variations of all order parameters over ther -k plane.

StableTW’s are located in the bifurcation diagrams
Fig. 6~b! above, in Fig. 6~c! between, and in Fig. 6~d! below
the dotted saddle lines. With increasingr the k range of
stable TW solutions widens.UnstableTW’s are located be-
tween the dotted saddle lines and the onset out of the b
state marked byN2150 in Fig. 6~b!, v56vstab

TW (k) ~thick
full lines! in Fig. 6~c!, andM51 in Fig. 6~d!. For a fixedr
above the minimum ofr stab

TW (k), the unstable TW solution
branches are connected to the basic state at the twok values
wherer 5r stab

TW (k)—see, e.g., the curves ofN21 versusk in
Fig. 6~b!. Increasingr beyond, say,r 51.275 the unstable
branches start to buckle before they reach the basic sta
r 5r stab

TW (k) and then split apart.
The Nusselt number is a nearly symmetric function ok

2kc
TW . The onset frequency,vstab

TW (k) @upper thick line in
Fig. 6~c!#, of the right propagating TW increases monoto

FIG. 5. Bifurcation surface of Nusselt numberN21 in the ab-
sence of through flow over ther -k plane. Thin lines show cuts a
equidistantly spacedk values. Two symmetry degenerate left a
right propagating TW solutions with wave numberk branch out of
the conductive state at the stability thresholdr stab

TW (k) ~thick full
line! whereN→1. The initially unstable TW’s become stable at th
saddler S

TW(k) ~thick dotted line!. Parameters areL50.01, s510,
c520.25, Re50.
a-
of

,

dle

ng

sic
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cally with k showing normal dispersion. Also the frequen
of the saddle TW atr S

TW(k) increases withk along the dotted
saddle line in Fig. 6~c!, however, with a smaller growth rate
Similarly, the mixing parameterM of the saddle TW de-
creases as a function ofk along the dotted saddle line in Fig
6~d!. Due to convective mixing the frequency of stable TW
is much smaller than the critical frequencyvstab

TW (k).
At a fixed r the group velocity,vg5]kv, of stable~un-

stable! right propagating TW’s is negative~positive! for
small k, changes sign aroundk.kc

TW , and becomes positive
~negative! for largerk. Furthermore, for a fixedr the group
velocity of the two saddle TW’s diverges at the two interse
tions of the frequency curves in Fig. 6~c! with the dotted
saddle line. The phase velocityvp5v/k is always positive.
At the SOC-TW transition,r * (k), the TW solution branches
merge with zero frequency with the stable SOC branche
the differentk’s.

FIG. 6. Wave number dependence of order parametersN21
~b!, v ~c!, andM ~d! in the absence of through flow at differentr
values. For orientation we show in~a! the bifurcation threshold
r stab

TW (k) ~thick full line! and the saddle locationr S
TW(k) ~dotted

line!. Thick full curves in ~c! denote frequencies,6vstab
TW (k), of

right and left propagating TW’s at onset,r stab
TW (k). Saddle values of

the order parameters are marked in~b!, ~c!, and~d! by dotted lines.
TW solutions are unstable between onset and saddle. Stable T
are located in~b! above, in~c! between, and in~d! below the dotted
saddle lines. Parameters areL50.01,s510, c520.25, Re50.
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2. Finite through flow: TWD’s

The wave number dependence of the TWD order par
eters at several fixedr values is shown in Fig. 7 for a sma
through flow, Re50.1. The presentation is the same as t
of Fig. 6 for TW’s at zero through flow except that in Fi
7~c! only the positive frequency range of TWD’s is show
Also here the hysteresis range of TWD’s between the m
ginal stability curver stab

D (k) @thick full line in Fig. 7~a!# and
the saddler S

D(k) @dotted line in Fig. 7~a!# moves with nearly
independent width to higherr values whenuk2kc

Du in-
creases. Similar to TW’s at Re50, the TWD bifurcation
branches taken at fixedr as functions ofk are closed in
themselves in the hysteretical region,r S

D<r<r stab
D , and

stable and unstable branches are connected at the s

FIG. 7. Wave number dependence of TWD order parame
N21 ~b!, v ~c!, andM ~d! in the presence of a small through flo
at differentr values. For orientation we show in~a! the bifurcation
thresholdr stab

D (k) ~thick full line! and the saddle locationr S
D(k)

~dotted line!. Thick full curve in ~c! denotes the TWD frequenc
vstab

D (k) at onsetr stab
D (k). Saddle values of the order parameters

marked in ~b!, ~c!, and ~d! by dotted lines. TWD’s are unstabl
between onset and saddle. Stable TWD’s are located in~b! above
and in ~c! and ~d! below the dotted saddle lines. Parameters arL
50.01,s510, c520.25, Re50.1.
-

t

r-

dle

r S
D(k) ~dotted lines in Fig. 7! at a small and a large wav

number, respectively.
StableTWD’s are located in Fig. 7~b! above and in Figs.

7~c! and 7~d! below the dotted saddle line. Here also thek
range of stable TWD’s widens with increasingr. However,
since for finite through flow the onsetr stab

D (k) and the saddle
r S

D(k) are shifted upwards towards higher Rayleigh numb
the stablek interval for TWD’s at fixedr has shrunk relative
to the Re50 situation. This is clearly visible in Fig. 7 nea
the dotted saddle lines. For example, atr 51.225 the size of
the stable TWD interval for Re50.1 is less than half its size
for Re50. And for Re50.25 the saddle positionr S

D(k) lies
already completely abover 51.225.UnstableTWD’s are lo-
cated between the saddle lines and the onset marked bN
51 in Fig. 7~b!, v5vstab

D (k) ~thick full line! in Fig. 7~c!,
andM51 in Fig. 7~d!.

The Nusselt number curves of TWD’s in Fig. 7~b! are not
much changed by the through flow. However, the TWD f

rs

e

FIG. 8. Wave number dependence of TWU order parame
N21 ~b!, v ~c!, andM ~d! in the presence of a small through flo
at differentr values. For orientation we show in~a! the bifurcation
thresholdr stab

U (k) ~thick full line! and the saddle locationsr S1
U (k),

r S2
U (k), and r S3

U (k). The thick full curve in~c! denotes the TWU
frequencyvstab

U (k) at onsetr stab
U (k). Stable TWU’s occur only in

the narrow shaded interval bounded by the saddle linesr S2
U andr S3

U

shown in~a!. Parameters areL50.01,s510, c520.25, Re50.1.
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quencies show relative to their Re50 counterparts in Fig.
6~b! an additional linear increase withk that is proportional
to Re. This increase reflects the TWD pattern advection
the lateral throughflow. For Re50.25 the advective fre-
quency enhancement of large-k patterns is already so stron
that one finds for a fixedr saddle TWD’s withk.p that
have frequencies larger than the onset frequencyvstab

D (k
,p) at k,p. Note that the TWD frequency branches in F
7~c! never approachv50 unlike their Re50 counterparts in
Fig. 6~c!: the through flow destroys the TW-SOC transitio
and the TWD patterns move at larger with an asymptotic
finite frequency that roughly increases linearly withk.

The through flow increases the mixing parametersM of
stable TWD’s by ak independent amount, say, fromM
.0.1 at Re50 to M.0.2 at Re50.25.

3. Finite through flow: TWU’s

The through flow has considerably more influence on
propagating TW’s than on right propagating TW’s. The
may appear up to three saddles on the TWU solut
branches that are identified fork5p in Fig. 2 with increas-
ing r by U1, U2, andU3. They make the wave numbe
dependence of the bifurcation branches rather complicat

In Fig. 8~a! we show the saddlesr S1
U (k), r S2

U (k), and
r S3

U (k) together with the marginal stability thresholdr stab
U (k)

as functions ofk for Re50.1. Stable TWU’s exist for Re
.0 only in the ranger S2

U (k)<r<r S3
U (k) that is finite only at

small wave numbers and sufficiently small Re@cf. shaded
area between the two saddle lines in Fig. 8~a!#. At higher
through flows r S2

U (k) and r S3
U (k) merge, the stable TWU

range is pinched off, and only unstable TWU’s are left.
To understand the topology of the TWU solution branch

at fixed r in Fig. 8 consider as an example the caser 51.35
lying slightly abover c

U that is marked by downwards poin
ing triangles. The initially unstable TWU solution branch
start for this particularr at onset with wave numberk
.2.78 withN2150 @Fig. 8~b!#, v5vstab

U @at the full thick
line in Fig. 8~c!#, andM51 @Fig. 8~d!#. Following the solu-
tion branches in Figs. 8~b!–8~d! with decreasingk the Nus-
selt number and the frequency grow whileM decreases
Then, at the saddleU2 at k.2.30 the TWU solution
branches are folded back to increasing wave numbers an
TWU’s become stable. After passing the saddleU3 at k
.2.31 whereN is maximal the TWU’s lose stability. Then
one wanders with decreasingk andN along the former uppe
unstable SOC branch ofN21 down to the saddleU1 at k
.2.05. After that the wave number increases whileN con-
tinues to decrease to its minimum before it increases a
on the way to theU1 saddle at largek.4.53. At the second
maximum of N21 at k.4.22 the former unstable lowe
SOC branch of the Nusselt number is again connected
the unstable TW branch, and one finally reaches the b
state again, now, however, withk.3.50.

In the absence of through flow the onset frequency of
propagating TW’s,2vstab

TW (k) @lower thick full curve in Fig.
6~c!#, is monotonically decreasing withk. Due to the through
flow induced frequency enhancement—that increases alm
linearly with k and Re—the group velocity of TWU’s a
onset,]kvstab

U (k), is much smaller in Fig. 8~b! than in Fig.
6~b!. Already for Re50.25 the functionvstab

U (k) is symmet-
y
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ric in k2kc
U . But for such large through flow rates the

exist only unstable TWU’s.

V. TRANSIENTS

In this section we investigate~i! the growth dynamics ou
of infinitesimal perturbations of the conductive state in
stable, strongly nonlinear TW’s,~ii ! the transition between a
TWU and a TWD after changing the Rayleigh number, a
~iii ! the decay of TW’s into the basic state. To analyze
transient dynamics we used among others lateral Fourier
compositions of the numerically obtained fields. In particu
we consider the fields at midheight,z50, of the layer

f ~x,z50;t !5 (
n52`

`

f n~ t !einkx. ~5.1!

Here f 2n5 f n* since all fieldsf are real.

A. Growth dynamics

The initial growth dynamics out of the conductive state
dominated by then51 mode in Eq.~5.1!. As long as devia-
tions from the conductive state are still small enough th
can be described by the linear equations~3.1!. Then f 1(t)
takes according to Eqs.~3.2!, ~3.3! the form

f 1~ t !5ADe2 ivDtegDt1AUe2 ivUtegUt. ~5.2!

Here vD,U are frequencies,gD,U growth rates, andAD,U
complex amplitudes of the TWD and TWU, respective
We consider here a situation wherer is larger than the bifur-
cation threshold of TWU as well as of TWD perturbations
that gD,U.0. Then both waves grow. However, their initia
amplitudesAD ,AU as well as their growth ratesgD ,gU and
their frequenciesvD ,vU will in general be different. Conse
quently the contribution of then51 mode~5.2! to the fields
~5.1! yields with vD.0 and vU,0 a rather complicated
superposition of downstream~right! and of upstream~left!
traveling waves. For convenience we use the indicesD and
U also in the case of zero through flow to identify right a
left traveling waves, respectively.

1. Absence of through flow

For a detailed discussion of the growth dynamics for
50 we refer to@10,56,57#. Here we review only the mos
important results to understand on this basis the effec
through flow. We should also like to mention that in expe
ments using large convection cells amplitude profiles a
phases of perturbations are inhomogenous, and one obs
complicated spatiotemporal dynamics@58–60,26,17#. Here
we consider a setup with a separation ratioc520.25 and a
lateral periodicity length ofG5l52 with periodic boundary
conditions thus enforcing a spatially uniform amplitude pr
file.

For Re50 the eigenvalue problem for linear TW pertu
bations of the conductive state is symmetry degenerate
vU

0 52vD
0 such that right and left propagating perturbatio

of the basic state have the same growth rate,gD
0 5gU

0 . How-
ever, depending on initial conditions, the amplitudesAD

0 and
AU

0 of the two counterpropagating waves will in general
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3806 PRE 61P. BÜCHEL AND M. LÜCKE
different. ForAU
0 50 or AD

0 50 one would have a pure TW
and for uAD

0 u.uAU
0 u one would have a standing wave~SW!

with amplitudes that are growing exponentially.
In Fig. 9 we show the dynamics of the lateral Four

harmonicsw1 , w3 of the velocity field andC1 , C3 of the
concentration field at midheight of the cell. The initial sta
consists of the basic state, with random perturbations of
temperature field ofO(1024) added to it. The Rayleigh num
ber r 51.418 is slightly above the oscillatory thresholdr osc
51.3348. In the linear growth regime up to aboutt530 one
observes the growth dynamics of an almost ideal SW si
the random noise provides amplitudes,AD

0 andAU
0 , for right

and left traveling waves, that are roughly of the same m
nitude.

In the pointer diagrams~left columns of Fig. 9! we show
the dynamics of the complex modesC1 andw1 in the com-
plex plane. In this plot the initial SW shows up as an osc
lation along a straight line through the origin. Nonlinear i
teraction between the two counterpropagating waves
combine to the SW causes faster growth of the one with
larger initial amplitude—in the case of Fig. 9 the left prop
gating TW. This causes a transition from SW to pure TW
manifests itself in the pointer diagram ofw1 as a transition
from a straight line via a spiral with counterclockwise m
tion in outwards direction as long asuw1u increases to a fina
circular motion for the relaxed left propagating TW. Th
initial contribution of the right traveling wave gets total
depressed by the nonlinear interaction with the predomi
ing left traveling wave.

The amplitude ofC1 strongly overshoots for reasons r
lated to the breaking of the large-amplitude standing conc
tration wave@10,57#. It reaches its maximal value att.33
and afterwards decreases very slowly to its final value. T
latter behavior is caused by convective mixing combin
with diffusive homogenization to spatially constant plate
values in regions of closed streamlines in the comov
frame of reference of the TW, when the convection amp
tude has become sufficiently large. This concentration re

FIG. 9. Growth dynamics of lateral Fourier modes at midhei
of the fluid layer for Re50. Initial condition is the basic state with
small noise ofO(1024) superimposed onto the conductive tempe
ture field. Left column shows in a pointer diagram the comp
amplitudesC1 andw1 in the complex amplitude plane. Right co
umn shows time dependence of the moduli of the Fourier mo
Parameters areL50.01,s510, c520.25, r51.418,k5p.
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tribution causes the decrease of the oscillation freque
@10,57#.

2. Presence of through flow: Competition
between TWD and TWU

A small through flow breaks the symmetry degeneracy
the Hopf bifurcation. Bifurcation thresholds, frequencie
and growth rates of TWD’s and TWU’s are different. For th
parameters considered here we haveuvDu.uvUu, and gD
,gU in the growth regime.

If one considers an initial situation withuADu.uAUu then
a TWU will grow predominantly due to its larger growt
rate. One should therefore observe a phase propagatio
opposite direction to the through flow. But sinceuvDu
.uvUu there is for small amplitudes an additional dow
stream phase propagation in through flow direction. Ho
ever, this TWD contribution weakens further and further d
ing the nonlinear interaction regime until the TWD is total
depressed by the predominantly growing TWU.

Such a scenario occurs in Fig. 10. Here, for Re50.025,
r 51.418, the temporal growth ratesgU.0.39 and gD
.0.37 are slightly different, andvU.210.42 while vD
.12.51. These growth rates and frequencies of TWU’s a
TWD’s were obtained from a linear analysis. In the poin
diagram ofw1 the initial SW motion along a straight line tha
occured in Fig. 9 for Re50 with equal growth rates and
frequencies is here, in Fig. 10, replaced by the predomin
evolution of the TWU that is perturbed by modulations fro
the TWD contribution with larger frequency. The latter d
out soon and then an evolution towards a pure TWU ta
place. However, for the parameters~Re50.025, r 51.418,
c520.25! of Fig. 10 the through flow does not admit a fina
stable TWU state~cf Fig. 2!—the nonlinear TWU shown in
Fig. 10 up to t5100 is only transient. It transforms afte
another 200–300 vertical thermal diffusion times into
stable TWD.

For a ten times larger through flow, Re50.25, one has
gU.0.43,gD.0.22,vU.21.08,vD.22.03. Then a TWD
contribution to the intial linear growth dynamics is no long
visible in Fig. 11. So initially there is only the TWU grow
ing. But for this large through flow the phase propagati
reversal into a TWD occurs already att.35 ~cf. the pointer

t

-

s.

FIG. 10. Growth dynamics of lateral Fourier modes at m
height of the fluid layer for Re50.025. Otherwise the condition
and quantities are the same as in Fig. 9.
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diagram ofw1 in Fig. 11!. Thereafter the system relaxes in
the stable nonlinear TWD state. Thus, initially TWU’s w
the growth competition but finally only TWD’s will survive

B. Dynamics at the transition TWU\TWD

Here we investigate the TWU→TWD transition with a
reversal of the phase propagation. The problem of realizin
TWD→TWU transition is discussed in Sec. V C. The tra
sition from a stable TWU that exists in the intervalr
P@r S2

U ,r S3
U # to a stable TWD can be enforced by increasi

the Rayleigh number tor .r S3
U beyond theU3 saddle. The

dynamics of this transition is shown in Figs. 12 and 13.
In Fig. 12 we show the reaction of the order paramet

N,v, and M as a function of time during the transitio
TWU→TWD for the small through flow Re50.025. The
transition was initiated att50 by instantaneously increasin
the Rayleigh number fromr .1.25 tor .1.27 shortly beyond

FIG. 11. Growth dynamics of lateral Fourier modes at m
height of the fluid layer for Re50.25. Otherwise the conditions an
quantities are the same as in Fig. 9.

FIG. 12. Time evolution of order parametersN21, v , andM at
transition TWU→ TWD initiated att50 by an instanteneous ste
r .1.25→1.27 beyond theU3 saddle. Parameters areL50.01,
s510, c520.25,k5p, Re50.025.
a

s

the U3 saddle. Then, with a fast initial transient on the tim
scale of a few thermal diffusion times, the convective flo
adopts to the larger thermal driving which leads to an
crease of the Nusselt number and of the convective fl
intensity. The associated increase of the advective redistr
tion and mixing of the concentration field causesM anduvUu
to decrease.

As was pointed out in the last section the oscillation f
quency is coupled to finite phase shifts of mode amplitud
A reversal of the phase propagation direction cause
change of sign of the phase differences between the m
amplitudes. At the transition TWU→TWD ~i! phase shifts
pass through zero in order to reverse the phase propag
direction or~ii ! mode amplitudes vanish to allow for phas
jumps. Here the phasewT1

of T1 approaches nearly linearl

the phaseww1
of w1. Crossing the zero line ofwT1

2ww1
at

t.400 in Fig. 12 happens at the same time when a ph
jump of wC1

2ww1
occurs which indicates thatC1 vanishes.

After that the system relaxes into the stable final TWD st
at about 500 vertical thermal diffusion times.

A more detailed visualization of the transitio
TWU→TWD is shown in Fig. 13. There we show success
snapshots of the concentration field and of the velocity fi
taken every 200 vertical thermal diffusion times. Att50

-

FIG. 13. ~Color! Time evolution of concentration and velocit
fields shown in color coded and vector field plots, respective
during the transition TWU→ TWD described in Fig. 12. Snapsho
were taken every 200 vertical thermal diffusion times from top
bottom. Top plot is the TWU att50, bottom plot the final TWD at
500 vertical thermal diffusion times. Red~blue! color implies low
~high! concentration.
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3808 PRE 61P. BÜCHEL AND M. LÜCKE
~top of Fig. 13! the stable TWU is shown before we hav
increased the Rayleigh number. There the left, counterclo
wise circulating roll has a higher concentration level than
right, clockwise circulating roll. Due to the phase differen
between velocity and concentration field the concentra
plateaus are asymmetrically fed by the boundary layers a
plates@31,9,10#. At t.200 ~second picture of Fig. 13! the
oscillation frequency determined via the temporal derivat
of wT1

vanishes. In contrast to that the phase differen

wC1
2ww1

has changed only slightly and reachesp only

aroundt.400 ~third picture of Fig. 13!. At this particular
time the boundary layers between the rolls are located r
at the positions of maximal up- and downflow so that t
concentration plateaus are fed symmetrically by the bou
ary layers at the plates. The concentration equilibrates du
the strong convective mixing before the phase differe
wC1

2ww1
changes sign. Thereafter the left, counter clo

wise circulating roll is fed predominantely from the botto
plate with low concentration values whereas the right, clo
wise circulating roll is fed from the top plate, and a lar
concentration contrast between adjacent rolls is reestabli
when the system finally relaxes to the TWD state~last pic-
ture of Fig. 13!.

C. Decay dynamics of TW’s

Here we briefly discuss the transition from propagat
convective roll patterns into the basic state when decrea
the Rayleigh number below the saddles that delimit the ra
of existence towards smallr values.

In the absence of through flow such a situation occ
when decreasingr below r S

TW . In our MAC simulation
for c520.25, L50.01, s510, k5p we have instanta-
neously changed the Rayleigh number fromr 51.25 to r
51.20,r S

TW . After reducing the thermal driving the conve
tion amplitude and the Nusselt number decrease during a
transient. Caused by the reduced convection amplitude
mixing of the concentration field weakens and the mixi
parameterM and the oscillation frequency increases. Aft
this fast transientN decreases slowly over a period of 10
vertical diffusion times whereasM increases further. At this
time the mixing parameter reaches its maximum value a
frequency ofv.7. This slow process is followed by a fa
decay of all field amplitudes when the system relaxes i
the basic state. During the whole transient of decay the
with the opposite phase propagation direction, which is
early damped forr ,r osc, is not excited, so we have a pu
TW decay into the basic state.

We also investigated the decay dynamics of TWD’s
well as of TWU’s for finite through flow rates. They bot
show similar behavior compared to the dynamics in the
sence of through flow described above. In the presenc
through flow there can exist a situation wherer S2

U ,r ,r S
D .

Here, a transition TWD→TWU seems possible, at least
principle, when the Rayleigh number remains above theU2
saddle atr S2

U . But such a transition from a TWD to a TWU
has never occurred in the numerical MAC simulations. D
to their higher frequencies TWD’s have smaller convect
amplitudes compared to TWU’s. A decrease into the R
leigh number band (r S2

U ,r S
D) further decreases the convectio
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amplitude and in addition increases the frequency. Both p
cesses drive the TWD further away from the stable TWU a
cause instead a decay into the stable basic state rather t
transition to the stable TWU.

VI. CONCLUSION

The effect of a horizontal through flow with small Rey
nolds number on stationary and traveling wave convec
patterns of rolls oriented perpendicular to the through fl
has been investigated numerically with a Galerkin expans
and a finite-difference method. We first have reviewed lin
bifurcation properties and in particular the through flo
induced symmetry breaking of the oscillatory instabilit
Then the influence of a through flow on nonlinear bifurcati
properties is elucidated as a function of Re for several ne
tive Soret coupling strengthsc. Also the wave number de
pendence of the bifurcation properties of the order para
eters mixing numberM, Nusselt numberN, and oscillation
frequencyv has been determined.

The through flow causes stationary patterns to propag
and furthermore lifts the symmetry degeneracy between
and right propagating TW’s at Re50. The right~left! propa-
gating wave with positive~negative! frequency at Re50 be-
comes a downstream~upstream! propagating TWD~TWU!
in the presence of a small through flow. Not only the on
Rayleigh number and initial frequency of TWD and TW
differ but more importantly the symmetry degenerate ze
frequency merging of the two TW’s with the SOC occurrin
for Re50 at r * is dramatically changed by the through flow
In the absence of through flow the transition from the tw
stable symmetry degenerate TW states atr ,r * to a stable
SOC atr>r * marks a drift instability of the latter toward
the former. The pitchfork topology of the associated bifurc
tion diagram ofv versus r close to r * is changed to a
shifted, imperfect bifurcation by the through flow: It brea
the left-right symmetry leading to a breakup and reconn
tion of the TW-SOC connections atr * . In addition the phase
velocities, i.e., the frequencies of the two TW’s are shift
upwards. For small Re the TWU solution branch gets c
nected with theunstableformer SOC branch atr ,r * . On
the other hand, thestableTWD solution that evolves with
increasing through flow out of the right propagating TW co
nects smoothly to thestableformer SOC solution atr .r * .

In the last section we have investigated the growth
namics from infinitesimal perturbations of the conducti
state into stable, strongly nonlinear TW’s, the transition b
tween a TWU and a TWD after changing the Rayleigh nu
ber, and the decay of TW’s into the basic state. For Re50
right and left propagating perturbations of the basic st
have the same growth rate. So for ‘‘generic’’ initial pertu
bations for which the amplitudes of the two counterpropag
ing waves are small androughly the same one observes in
tially an exponentially growing standing wave. Th
nonlinear interaction between the two counterpropaga
waves that combine to the SW causes faster growth of
one with the larger initial amplitude and finally a pure rig
or left propagating TW occurs. In the presence of a sm
through flow, bifurcation thresholds, frequencies, and grow
rates of TWD’s and TWU’s are different. For ‘‘generic’
initial perturbations a TWU will grow due to its large
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growth rate thereby suppressing any TWD admixture. Ho
ever, the stability range of final-state nonlinear TWD’s
typically much larger than the one of TWU’s. So for man
parameters the system cannot run into a stable TWU. In s
a situation one observes finally a tranformation of the tr
sient TWU to a TWD.

The TWU→TWD transition with a reversal of the phas
propagation being an interesting and experimentally rea
able phenomen was investigated in more detail: In a TW
~TWD! the counterclockwise circulating roll has a high
~lower! concentration level than the clockwise circulatin
roll—due to the respective phase differences betweenC and
w concentration is fed asymmetrically by the boundary la
ers at the plates into the two rolls. When the phase velo
reverses during the transition the vertical boundary lay
e

ll,
n
,

ss

ys
il
n

d,
ns
te

v.

s

ch
-

ch
-

-

-
ty
rs

between the rolls are located right at the positions of ma
mal up- and downflow so that the concentration is fed sy
metrically into the rolls. The concentration equilibrates d
to the strong convective mixing before the phase differe
betweenC andw changes sign. Thereafter the system rela
into the TWD state with a reverted concentration contr
between the rolls. Velocity and temperature fields do
change much during this transition.
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@5# H. W. Müller, M. Lücke, and M. Kamps, Europhys. Lett.10,
451 ~1989!.

@6# R. E. Kelly, Adv. Appl. Mech.31, 35 ~1994!.
@7# The few early works are reviewed in Ref.@4#. Reference@27#

presents a comprehensive, numerically exact stability anal
of the basic nonconvecting state consisting of lateral Poiseu
flow with horizontal stratification of temperature and conce
tration.

@8# For a review see Refs.@4,1#. Further references may be foun
e.g., in Refs.@9,10#. See also the more recent publicatio
@11–17# of some of the many groups that have investiga
convection in binary mixtures.
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@57# C. Fütterer, Ph.D. thesis, Universita¨t des Saarlandes, Saa
brücken,1998.

@58# D. Bensimon, P. Kolodner, C. M. Surko, H. L. Williams, an
V. Croquette, J. Fluid Mech.217, 441 ~1990!.

@59# P. Kolodner, D. Bensimon, and C. M. Surko, Phys. Rev. Le
60, 1723~1988!.

@60# B. L. Winkler and P. Kolodner, J. Fluid Mech.240, 31 ~1992!.


