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Influence of through flow on binary fluid convection
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The influence of an externally imposed lateral Poiseuille through flow on linear, nonlinear, and transient
behavior of transverse convective rolls in a horizontal layer of binary fluids heated from below is investigated.
The convective roll solutions are determined numerically for realistic boundary conditions with a many-mode
Galerkin expansion as well as with a finite-difference method. Bifurcation diagrams of various quantities like
Nusselt number, frequency, and mixing behavior are determined as functions of heating rate and wave number
for several through flow rates and Soret coupling strengths for ethanol-water parameters. The growth dynamics
of small convective perturbations into different, strongly nonlinear convective states and the transition between
the latter is studied also.

PACS numbgs): 47.20—k, 47.10+g, 47.27.Te, 47.54r

I. INTRODUCTION where the primary bifurcating convective structures have the

form of squares.
An externally imposed flow can change the spatiotempo- This richness of different convection phenomena in mix-
ral behavior of dissipative structures in forced nonequilib-tures is due to the fact that the buoyancy, i.e., the driving

rium systems such as chemical and reaction-diffusion Sysf_orce for convection is influenced by concentration varia-

tems, biological problems, and the large variety of differentions- They are generated via the Soret effect by temperature

hvdrodvnami ttern formin terf. One example | gradients which sustain them against the action of advective
ydrodynamic pattern 1o 9 systeriy]. ne example 15 mixing and diffusive homogenization. The Soret coupling
the stationary, toroidal Taylor vortices in the annular gap

] ] ] Mbetween temperature and concentration field is measured by
between concentric cylinders that in the presence of an axighe separation ratiay [1]. Without Soret couplingg=0,
through flow propagate in the downstream directi@).  concentration deviations from the mean diffuse away. In this
Here the through flow enforces a finite phase velocity on aimit the concentration does not influence the longtime be-
forwards bifurcating pattern. A situation with similar bifur- havior of the mixture and one thus observes §or 0 the
cation behavior occurs in a narrow rectangular convectiortonvective properties of a pure fluid. Fgk: O, however, the
channel filled, e.g., with water that is heated from below.externally imposed vertical temperature difference across the

Therein the convection rolls are aligned with their axes alondluid layer sustains concentration variations in balance with
the small side, say, in thg direction. Here a small flow the adverse effects of convective mixing and diffusion.

through the channel in the direction causes the transverse In this paper we investigate the effect of a honzontal Pol-
seuille through flow on stationary and traveling wave con-

roll pattern to propagate downstream in théirection| 3—9). vection that appear for negative Soret coupling in ethanol-

On the other hand, in a large through flow and/or in Wlderwater-like mixtures. We deal here with spatially periodic,

channels, the through flow causes an orientation of the rOIIgxtended structures of straight transverse rolls with axes ori-
parallel to the through flo4]. ented perpendicular to the through flow that can be realized
_ While the investigation of heated shear flows of pure flu-j, harrow convection channels. This investigation provides
ids has a long history—see, e.g., Ri] for a review—we  {he pasis for an understanding of more complex structures
are not aware of similarly numerous and extensive investigagccurring in long convection channels with inlet and outlet
tions of the influence of an imposed shear flow on convectivgndyced inhomogeneities and spatially varying amplitudes
structures occurring in binary fluid mixtures such as, e.g.[18].

ethanol water{7]. This is somewhat astonishing since the Despite the restriction to patterns with spatially homoge-
bifurcation behavior and the spatiotemporal properties of theieous amplitudes the bifurcation behavior of these structures
convective structures that occur close to onset in mixturei the presence of through flow is surprisingly complex: The
display a much larger variety than in pure flui@8], see also through flow lifts, first of all, the mirror symmetry degen-
Refs.[9—17]). One observes in mixtures not only stationary eracy of left and right traveling waves concerning their linear
roll convection—what we call for historical reasons station-as well as their nonlinear properties. Second, the through
ary overturning convectioSOQ—as in pure fluids but also flow changes in a fundamental and spectacular way the con-
symmetry degenerate left or right traveling wa\i@V) pat-  nection and merging of the two symmetry degenerate TW
terns. The bifurcation of both the stationary and the travelingsolution branches with the SOC state that occurs with zero
roll structures can be either supercritical or subcritical. ThusTW frequency in the absence of through flow when the finite
in both cases the transition from the quiescent heat conducamplitude SOC undergoes with decreasing Rayleigh number
ing state to the convective states after crossing a critical heag drift instability with a left or right propagating phase.

ing rate can be either continuous, i.e., of second order or Additional complexity comes from the fact that the SOC
discontinuous and hysteretical, i.e., of first order dependingind TW solutions are strongly nonlinear—the advective non-
on parameters. Furthermore, there is a wide parameter randjaearity in the concentration balance is typically large com-
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pared to the diffusive linear transport—with significant hys- The Lewis numbelL is the ratio of concentration diffu-

teresis. sivity D and thermal diffusivityx, and the Prandtl number
This paper is organized as follows: In Sec. Il we describéis the ratio of momentum diffusivity and «:

the system and our numerical methods for investigating it. A

review of the linear bifurcation properties as obtained from a L= E v 26

linear stability analysis of the basic conductive state is pre- o YTk 2.6

sented in Sec. Ill. The influence of a through flow on non-

linear bifurcation properties including an investigation of theFor room temperatures (10—40°C), the Prandtl number of

wave number dependence is contained in Sec. IV. The trarethanol-water mixtures lies between 5 and20], while for

sient dynamics of growth, decay, and transitions betweemormal fluid helium it is ten or more times smaller. The

different TW types is investigated in Sec. V. The final sec-Lewis number of liquid mixtures is about 0.01. In this paper

tion, Sec. VI, gives a short summary and conclusion. we take the fluid parameteks=0.01 ando =10 as represen-
tative examples for ethanol-water mixtures.
Il. SYSTEM The setup is characterized by three control parameters that

can be varied independently.

We consider a horizontal layer of a binary fluid mixture (i) The Rayleigh number
such as, e.g., alcohol-water confined between two parallel,
perfectly heat conducting and impervious plates. The setup is agd
exposed to a homogeneous gravitational figid,—ge, and Ra= KV AT 2.7
a temperature gradiemT=T oy~ T ypper bEtWeen the
lower and upper confining boundaries. Unscaled quantitiegneasures the externally imposed thermal driving due to the
are underlined to distinguish them from the scaled ones intemperature gradient between the plates. For convenience we
troduced below. We investigate here convective flow patuse the scaled Rayleigh number
terns of straight parallel rolls as seen in many experiments.
The rolls are aligned in, say, thedirection. Ignoring varia- Ra
tions iny direction we thus describe two-dimensioriaD) r= @ 2.9
convection in arx-z plane perpendicular to the roll axes.

3

that is reduced by the critical Rayleigh numberf:)FRar onset
A. Field equations of convection in a pure fluid with the critical wave number
The system is described by the balance equations fdfo- The analytical values are Ra1707.762 andk]
mass, heat, concentration, and momentum in Oberbeck=3.116 32.
Boussinesq approximatidi9,4] (i) The lateral through flow driven by a lateral pressure
gradient defines the Reynolds number

0=-V-u, (2.1
d
4T=-V-Q, Q=uT—VT, 2.2 Re=(u) . 2.9
#C=-V.J; J=uC—-LV(C—yT), (2.3  where(u), is the vertical average of the lateral velocity field.

We consider in this paper a through flow in positidirec-

du=—V(uu+p—oV:u)+B; (2.4 tion with positive Reynolds number.

(iii) The separation ratio
B=ocRaT+C)e,.
— E ﬁ (2 1@
Lengths are scaled with the heigihiof the layer, time with v= aTy ‘

the vertical thermal diffusion timel?/x, and the velocity

field u=(u,0w) with «/d. Here, « is the thermal diffusivity = with the thermodiffusion ratik; of the mixture reflects the

of the mixture;T=(T—T ,)/AT denotes the deviation of the influence of temperature gradients on the concentration cur-
temperature from the mean temperatdfg in the fluid rentJ. For negative separation ratigs the imposed tem-
scaled by the temperature difference between the plsfes perature gradient causes in the quiescent heat conducting
The field C=(C—C,)B/(«AT) is the scaled deviation of State an antiparallel concentration gradient via the Soret ef-
the mass concentratid®=p ;/(p 1+ p ,) of the solute from  fect. The resulting solutal contribution to the density change
its meanC o. Herep ; andp , are the mass density fields of IS opposite to the thermal contribution, thus weakens the
the two components. For small deviationsToand C from buoyancy and stabilizes the heat conducting state. For room
their means the total mass densityzp ;+p , is governed temperature ethanol-water mixturgsyalues between about

by a linear equation —0.5 and+0.2 can be easily realized experimentdI&0].
The Dufour effect that reflects the coupling of a concentra-
p=poll—a(T-Ty—-B(C—-Cyl, (2.5  tion gradient into the heat currei® can be discarded in

binary liquid mixtureg21,27.
with @, B being the thermal and solutal expansion coeffi- The buoyancy forced— p ()g due to density deviations
cient of the fluid, respectively. For ethanol-water mixtures atfrom the mean is the driving mechanism for convective mo-
room temperaturer and 8 are positive] 20]. tion. It enters into the momentum balan@e4) via the buoy-
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ancy termB which follows from Eq.(2.5) after scaling. This D. Numerical methods

is the only place where density variations are retained in the The linear bifurcation properties discussed in Sec. IlI
Oberbeck-Boussinesq approximation. In the continuity equawere obtained by solving the field equations after lineariza-
tion (2.1), the fluid has been assumed to be incompressiblgjon around the conductive state with a shooting method as in
i.e., the mass density is constant, and the mass current is Ref.[27]. Here we briefly describe the two different methods
proportional to the divergence-free velocity fiald Taking  that we used to solve the fulonlinearhydrodynamical field
the divergence of the Navier-Stokes equati@d), one gets, equations.

via the continuity equation, a Poisson equation for the pres- On the one hand we integrated the partial differential
surep. The Poisson equation substitutes the continuity equagquations2.1)—(2.4) using a modification of theoLA code

tion and builds, together with Eq$2.2—(2.4), a complete that is based on the MAC meth¢@8,29. This is a finite-
set of equations for the fields T, C, andp. difference method of second order in space formulated on

staggered grids for the different fields with uniform spatial
resolution. An explicit first-order Euler step in time was used
in the balance equations of h€at2) and concentratio2.3)

The rigid, impervious, and perfectly heat conductingand a second order DuFort-Frankel scheme in time was used
plates which define the horizontal boundaries of the fluidin the momentum balance equatith4). The Poisson equa-
layer are located at=* 3. As boundary conditions for ve- tjon for the pressure field, which results from taking the di-

B. Boundary conditions

locity and temperature field one obtains vergence of Eq(2.4), was solved iteratively using the artifi-
1 1 cial viscosity method [29]. In the finite-differences

u=w=0: T=F- at z==+—. (2.11) apprqximation of the field equations that is usgd in our MAC

2 2 algorithm the threshold for onset of pure fluid convection

[30] lies for our uniform discretization akx=Az=0.025 at
Ré),,,=1705(+0.2%) for k=. So, when presenting nu-
merical results obtained with the above discretization, we
1 reduce Rayleigh numbers with this threshold value. As an
3,C=4¢d,T at z= t5- (2.12  aside we mention that the discretization in & was Ax
=Az=0.05.

In addition we also used a many-mode Galerkin approxi-
mation scheme. Our mode expansion uses the mirror glide
symmetry

Due to the impermeability of the plates there is no concen
tration current through the plate3e,=0, or

Since the pressurg is determined via the Poisson equation
by u,T,C, we do not need boundary conditions for it.

In the lateral direction we enforce periodic boundary con-
ditions. All fieldsF=u,w,T,C,p are periodic

A
x+—,—z;t) (2.16

)=+
F(x,z;t)y==F 5

F(x,z;t)=F(x+T,z;t) (2.13
with given periodicityl". For the discussion of the bifurca- (Jfgogn%aEiESWW$hCS?§fja||y uniform amplitude with for
tion scenario we will mainly focus on a lateral periodicity The velocity field is then approximated by Chandrasekhar

length of'=\ =2 which refers to a wave number of the roll i 221 that fulfill th listi lin_horizontal
patterns near the critical one but other wavelengths are e%mc ions [32] hat tult € realistic no-siip horizontal
oundary conditions at the plates. For the vertical velocity

plored as well. This periodicity length is also close to thef. Id btains th .
values typically observed in experiments without lateral leld one obtains the representation
through flow when an extended bulk regime of nonlinear _

saturated, spatially uniform pattern amplitude exists. Note W(x,z,t)= >, > [wd} . (t)e @Dy cc]CM(z)
that imposing the periodicity length of one wavelength in our =0 m=1

two-dimensional system precludes some of the instabilities ,

of large systems, e.g., the Eckhaus instabfizg] and the +2> X [wh(he 2t c.c]SM(z).
complex dynamical behavior found in three-dimensional ex- n=0m=0

perimental setupg24-26,22. (2.173

Lateral and vertical velocity fields are coupled via the conti-
nuity equation. For TW patterns there exists also a weak,

For small Ra and Re a laterally homogenous heat conndependent meanflow in the lateral direction that is also
ducting state without convective vertical velocity is stable. Inexpanded in Chandrasekhar functions. The deviation of the
this basic state the velocity field.,,q=U(z)e, is given by  temperature field from the conductive profiled=T

C. Conductive state

the plane horizontal Poiseuille flow —Teonds IS €xpanded in trigonometric series
1 _oi .
U(z)=0 ReP(z)=0 ReG(Z—zz). (2.14 ¢9(x,z,t)=n§O mEzl [63m(t)e 2"+ c.c]y2 sin2mz)
The temperature and the concentration field of the basic state 2m+10 1\ A —i(2n+1)kx
arex independent and linear functions n JrnZo mE:o [Oansi(t)e recl

Teond=—2Z; Ceond=— ¥z (2.15 X2 cog(2m+1)mz]. (2.17b
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Within the Galerkin method the impermeability condition would be zero. On the other hand, in the conductive state

(2.12 is conveniently ensured by using the combined fieldwith Soret-induced concentration gradietjs defined to be

{=(C—C.ond — 0 instead of the concentration field. This 1.

auxiliary field obeys the boundary conditions{=0 at (i) TW states are characterized by their oscillation fre-

z==*1. Thus, it is expanded as quencyw which, by the way, is very closely related to the
size of M [33].

{((xz)=2 > [&MYt)e 2"+ cc]

n=0 m=0 Ill. LINEAR BIFURCATION PROPERTIES
X2 sid(2m+1)7z] In this section we briefly review the influence of through
flow on linear bifurcation properties of different convective
+ 2m —in+1kx g o o patterng 27]. We f_()(_:us here our interest on small Reynqlds
go mE:o [Zansa(De ccl numbers. For sufficiently large Re, the lowest relevant bifur-

cation threshold of binary mixtures with any asymptoti-
X\2—=6ppc042mnz). (2170  cally approaches the critical Rayleigh number of pure fluid
convection[27] since in this limit the externally imposed
! shear flow effectively eliminates the Soret-induced coupling
was truncated ab,=m,=3. Also the meanflow contained gffects between the convective concentration field and the

three modes iz. However, thef as well as the field were e fields by suppressing vertical convective transport of
expanded up to, ,=m, =19 to ensure a sufficient resolu- goret driven concentration perturbations.
tion of concentration boundary layers.

Projecting the field equations faw, #, and { onto the
bases of the mode expansi¢h17) yields coupled ordinary
differential equations for the mode amplitude3(t), 67(t), _ For a Iinf-zar stabili';y analysis of the basic state one con-
and {™(t). For SOC solutions all mode amplitudes are con-Siders the field equations
stant in time and can be chosen to be real. In a relaxed TW, (91— V) V2W+ (UV2— 32U) oW
however, with constant oscillation frequenay and phase t 27X

The expansion of the velocity field in theandz directions

A. Stability analysis of the basic state

velocity v,,= w/k the complex mode amplitude of a lateral =Rac(32+d2)[(1+ ) 6+ ], (3.13
Fourier modee™ "X, oscillates with frequencgiw. To solve Y

the coupled equations for the mode amplitudes we use a (9,—V2+Ud,) 0=w, (3.1
Newton-Raphson technique with backtracking. We itera-

tively adjust the mode amplitudes and the oscillation fre- (9,—LV2+Ua,) = — V20, (3.19

guency of a TW for fixed control and fluid parameters start-

ing from given initial values. To follow the bifurcation which are linearized in the small deviationsé, and{ from

branches it was sometimes more convenient to iterativelyhe conductive state. The fields are laterally Fourier decom-
adjust the Rayleigh numberfor given convective amplitude posed
1

Wl-
q)(r,t)=<I>(z)ei(kxx+kyy)eSt (3.2
E. Order parameters

. . . . with a complex characteristic exponent
To characterize the convective solutions we use different

ord(_ar parameters: s=Res+ilms=y—iw (3.3
(i) The Nusselt number

and complexz-dependent amplitudes of the perturbations

Ly 2
N_ffo XQ. (219 d=(w,8,2). (3.4

is the total vertical heat current through the fluid layer,Inserting the ansat3.2) into the field equation$3.1) one
J5dxQ,, reduced by the conductive paff,dxQ.one=T".In  obtains a X3 system of ordinary differential equations for

our scaling,Qcong=1 . The reduced vertical heat current ;) that are nonautonomous in the presence of through
carried by convection alon®y—1, is a measure of the con- fjoy [27]. Due to the boundary conditions the eigenvalue
vec_tllve flow |ntenS|_ty. o . spectrum is discrete. We are interested in the three charac-
(i) To characterize the concentration field in the nonlineatg istic exponents, (j =1,2,3) whose temporal growth rates
J 1 ’

convective states we use the mixing parameter v; are closest to zero and whose eigenfunctidnéz) have

M = <C2>/<Cgond>v (2.19 no nodes other than those at the horizontal boundaries.
The horizontal wave vectdr of the perturbatiori3.2) and

which measures the size of concentration variatidhss the  the through flow Reynolds number Re enter into E2)1)

variance of the concentration field reduced by its value in th@nly ask?=kZ+k andk, Re. Therefore, one can invoke the

conductive state. Here, brackets imply a spatial average ovérquire transformatiofi34]

the whole fluid volume. In a perfectly mixed mixture where 5 5 )

all concentration deviation€ from the mean vanishi fkx+k§ ke Re)=f(k",k Re cosp) (3.5
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with ¢ denoting the inclination angle of the roll axes com-

pared to the direction of the imposed through flow. For a
complete stability analysis one has to consider only pertur-

bations with wave vectork=k,e, which are parallel or an-
tiparallel to the through flow direction. The linear behavior
of other types of rolls withp# 0,7, e.g., longitudinal ones,
can be extracted with E@3.5 by rescaling the through flow
Reynolds number with cag[27]. In the absence of through
flow, Re=0, the Squire transformatia.5) reflects the hori-
zontal rotational symmetry of the system.

B. Absence of through flow

The stability properties of the conductive state against in-
finitesimal convective perturbations in the absence of
through flow have been discussed in detail in the literature

[35,36,38,3T. For ¢ above (below) the tricritical value
s0c=—0(1077) [37], the SOC bifurcation is forwards
(backwards However, belowysoc=—L/(1+L) [39,40

where the stationary threshold,; diverges, the lower SOC

solution branch is disconnected from the conductive solution

for positiver [41]. In addition, there exists for strong stabi-
lizing Soret coupling a Hopf bifurcation threshold &i.

where symmetry-degenerated left and right traveling wave
solutions branch out of the conductive state. The Hopf fre-

quency, wy, varies asw?~—44%l(1+ ¢+ 1lo) [42,43.
For ¢ above(below) the tricritical valuey,,= —O(10™%)
[37,44] the TW bifurcation is forwardg¢backwards The bi-
furcation thresholdsrg;,; and r, s become equal at the
codimension-two valugcrp=—0(10 °) with slightly dif-

ferent critical wave numbers and a small Hopf frequency.

INFLUENCE OF THROUGH FLOW ON BINARY FLUD. ..
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FIG. 1. Through flow dependence of critical properties for nega-
tive Soret couplingy. In (a) we show the bifurcation thresholds
rd,r2, andr? and in(b) the critical frequencies? ,»? , and w?
for the three propagating wave solutiods(full lines), D (dashed
lines), andS (thin dotted lineg Thick dotted lines refer to the pure

For a more detailed discussion of the codimension-two poinfUid: #=0. Parameters aie=0.010-=10.

see, e.g., Ref§35-38,45,4%

C. Notation

Instead of numbering the three different bifurcation
thresholds and bifurcating convective solutions of the33
eigenvalue probleni3.1) in the presence of through flow,
Re>0, we use henceforth superscriggdJ, D. They identify
the behavior of critical perturbations!*~ <) in the limit
Re—0. Eigenvalues for whichw,(Re—0)=0 are marked
by S since these perturbations are stationary for-Re Ei-
genvalues for whichw.(Re—0) is positive(negative carry
the superscripD (U), since they characterize perturbations
which propagate in downstreafapstream direction for Re
—0. Thus, the caseS (“stationary”), D (“downstream”),
andU (“upstream”) characterize the perturbations and with
it the bifurcating nonlinear solutions in the limit Re0. For
convenience we use this notation also in the absence
through flow, Re=0. ThenD(U) identifies a TW where the
phase is propagating to the rigtieft) with frequencyw®
>0 (wY<0).

Finally we should like to draw attention to the fact that we
distinguish the propagation direction of different TW’s by

their frequency not by their wave vector—we only consider

positive k,=k in this work.

D. Through-flow-induced symmetry breaking
of the oscillatory instability

We briefly review in this subsection the critical properties
of a binary mixture such as ethanol water with- —0.25 as

a representative case for moderately negative Soret cou-
plings. In the absence of through flow, the threshold of sta-
tionary convection has already disappeared sificeysqc
L/(L+1). There exists only the Hopf bifurcation
threshold atr,5.=1.3348 for symmetry degenerate left or
right propagating TW’'s with the critical Hopf frequency
wy=11.2125. Finite through flow breaks the symmetry of
the two TW patterns and different, up- and downstream
propagating TW's bifurcate out of the conductive state. They
will be referred to as TWUtraveling wave upstreamand
TWD (traveling wave downstream

The relative difference between the critical wave numbers
k> andk! of the D and U waves, repectively, is not more
than a few percent for the mixtures and Reynolds numbers
considered here. The critical frequencieS and w are

actically linear functions of Re. They start at zero through

ow with the Hopf valueswy and — wy, respectively, and
they can be very well approximated by the first-order result
of a low-Re expansiofi27]

w2V=+w,+41.9Re. (3.6

The rate of change®w./d Re~41.9 also holds for other
separation ratio$27] including the pure fluid casp47] as
can be seen in Fig.().

Note that for Reewy/41.9 both critical frequencies,
og and o, as well as the phase velocitiespy’
=w2Y/k?'Y are positive. Then both critical waves propa-



3798 P. BUCHEL AND M. LUCKE PRE 61

gate in through flow direction in the laboratory frame. How- finite through flow, however, moves the threshofdiown to
ever, vy, is  always  smalle—by  about finite values: The dotted curve fof of Fig. 1(a) for y=
2wy k.(Re=0)—than U?h- Only for Reswy/41.9 the —0.01< % shows (i) that rf:oo below a finite Re
phase velocityp 5., is negative and opposite to the through ~0,019, (ii) thatr S is finite for Re> Re, , andiii) thatr$
flow. So, the wording “upstream traveling waves™ does not sieeply drops down for ReRe, [27]. The Reynolds number

necessarily imply that the phase velocity of such a TW iSRex whererf diverges grows with increasing/|—a stron-

negative in the laboratory fram_e. It.WOUI.d be hegative in ager Soret coupling requires a larger through flow to move the
frame moving in through flow direction with a conveniently

) . — bifurcation threshold$ from infinity to a finite value.
defined mean lateral velocity such as, eugs 3 (v, +vpp)- ¢ y

E. Bifurcation thresholds at negative s IV. NONLINEAR BIFURCATION BEHAVIOR

Here we discuss the bifurcation threshotds(full lines), . : . .
D . S . X In this section we discuss the influence of an externally
rc (dashed lines andr (dotted line$ as functions of Re for . i ) )
.Imposed lateral through flow on the nonlinear bifurcation

a few characteristic negative Soret couplings as shown in ) . )
Fig. 1(a). behavior of tranverse convective rolls of a given lateral pe-

riodicity length '=Nx=2 in mixtures with buoyancy-

1. r(Re) reducing negative Soret effect. The through flow causes sta-
_ . i . tionary patterns to propagate and furthermore lifts the

With increasing through flow rates; [full lines in Fig. symmetry degeneracy between left and right propagating
1(a)] decreases for small Re, develops a minimum close t W’s at Re=0. The right(left) propagating wave with posi-
where wt’ goes through zero, steeply increases thereaftelhve (negative frequency at Re 0 becomes a TWITWU)
and finally flattens asymptotically for any Soret coupliftg , y,q presence of through flow. Not only the onset Rayleigh
towards the Re-dependent pure _quid stability boun_darynumber and initial frequency of TWD and TWU differ but
rq(Re,zp:O) at large Re. The flattening Of can be seen in more importantly the symmetry degenerate zero-frequency
Fig. 1a) only for the weaker Soret coupling=—0.01. merging of the two TW’s with the SOC occurring at R@

Witg incieoasinﬁ].ftSotretI strengthdtf;e flatter;f;g r&fttqgart‘:]s is dramatically changed by the through flow. To elucidate the
re(Re=0) shifts to larger and larger R@7] outside the influence of a through flow we first review a typical bifurca-

g:ﬁ;irna;[gz ?;ngbrtt -Ii—r:‘chchi dSl::f(];ISIpEiinr%y é?frggsthggtjvsgegomtion diagram foryg=—0.25 at Re=0 determined with the
inite-differences MAC algorithm witlAx=Az=0.025. In

concentration field on one side and the temperature and v . . . Co
the second part of this section we discuss the variation of

locity field on the other side. For smally, e.g., bif ‘on behavi q field for diff S

=—0.001, the stability boundarytJ lies always belowE |ur(i§t|on € a¥|or "?‘?1 e sFructl;]re orr1 f|| erent orISt

while for larger| | there are two intersections of the curves coupling strengths with increasing through flow rates. Fi-
nally the wave number dependence of the order parameters is

ro andry with r2<r{ in betweer{27]. Note, however, that -
the bicritical TWU and TWD perturbations cannot be super_presented. For finite through flow rates all order parameters

imposed linearly to a standing wave, since their wave numPresented in Figs. 2-8 are determined with the many-mode
bersk? =K differ, and furthermorasn?+ — w? . So, in the Galerkin method with a mode truncation 0f ,=m, =19

Re-interval between the intersections rof and r® down- andn,=m,=3 for the velocity field as well as for the mean-

stream propagating convection waves grow first while out-ﬂOW'

side this interval at small Re and large Re TWU convection
bifurcates first out of the conductive state. . . .
A. Bifurcation behavior in the absence of through flow

2. r2(Regh) In the left column of Fig. 2 we show thedependence of

The bifurcation threshold? [dashed lines in Fig. @] ™MXing parameteiM, frequencyw, and Nusselt numbeN
always increases monotonically with Re. The initial :slope_1 of the convective _states .W'th spapally uniform amplitude
ard/dRe increases somewhat with decreasing. For ﬁn_dov(vﬁvelfq%tmffc;gg gnl)(()tur_?hwnh dparamete(;; R:@
=—0.01 the stability curves’ andr? collide in the Re =0.01,0=10, §=—0.25[9,10). These diagrams display in

. - . a representative way the subcritical bifurcation topology that
range displayed in Fig. 1. For higher through flow rates there typical for sufficently negative Soret coupling The dot-

Opens up a wave number gap where neither TWD nor Twid line in Fig. Zc) gives for comparison the Nusselt number
perturbations can groy27,48,18. of SOC in a pure fluidy=0.

3. SRew) The conductive state becomes unstable gt=1.3348.
Just above 4. the system does not saturate in a state with
For pure fluid convection)=0, the bifurcation threshold small convective amplitude as in a pure fluid. Here two
re(Re,y=0) [thick, dotted curve in Fig. @] slightly in-  strongly nonlinear, symmetry degenerate TW'dartye am-
creases with growing Rié5]. In the absence of through flow, plitude are stable above threshold. For simplicity we refer in
rS rapidly increases with|y| and diverges atygoc  this section to right propagating waves with positive fre-
=—L/(L+1). Beyond this Soret coupling the solution quency only. But their mirror images, the left propagating
branch of stationary nonlinear convection is disconnectedvaves with negative frequency, are meant in an analogous

from the basic state ag(Re=0,/< 50 =2. Asmall but  way as well.
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Re=0.000 Re=0.025 ing r a drift instability associated with a symmetry-breaking
forward bifurcation to left or right traveling waves.

The unstableupper SOC branch with the larger Nusselt
number[dashed line with open square in Figcy can be
stabilized belowr* down to the SOC saddle at3°°
=1.078 by enforcing a pinning of the phase by imposing the
conditionu(x,z;t)=0 atx=0,I". So, in our short system of
lengthT"=2 the roll pair cannot travel. In somewhat longer
systems, however, this pinning is not sufficient to prevent
TW's in the bulk, as has been seen in simulations of a system
of lengthI"=10[49] and similarly in experimentg50-53.
Furthermore, we have stabilized also the unstédoheer bi-
furcation branches of SOC and TW solutiduished lines
with open symbols in Fig. @)] with smaller Nusselt num-
bers by using an adaptive control mechanism in the MAC
simulations[33].

The Nusselt numbers of TW and SOC states typically lie
just below the values for a pure fluidiotted line in Fig.
2(c)]. Only near the saddles there are stronger deviations.
That our SOC and TW states are closer to SOC states in a
¢ . iy pure fluid than to the conductive state of the mixture is re-

0-01.'(') ";;“"“1*';"1"(') ‘12 “““ 5 flected also in the mixing parametét [Fig. 2(a)] of the
. . concentration field. Convective mixing of stable SOC pat-
) ) terns dramatically reduces concentration variationsMo
_ FIG. 2. Influence of lateral Fhrough flow on bifurcation proper- ~0.1 with a slight increase at the saddle. The convective
ties of transverse roll convection. Shown are from top to bonomhomogeneization of concentration, measured in terml of

mixing number.M’ frequen?y“” and Nusselt numbeN — 1 versus is more efficient by a factor of 3.5 in SOC states than in a
reduced Rayleigh numberin the absence of through flow, R® TW at its saddle

(left column, and in the presence of a small through flow, Re ) . ) . )
=0.025(right column). Full (dashedl lines with filled (open sym- Note that the curve oMy [lines with triangles in Fig.

bols denote stabléunstablé solutions. Right propagating TW's at 2(&)] has the same form as that @fversusr in Fig. 2(b). In
Re=0 and TWD’s at Re0.025 are shown by lines with down- fact, TW frequency and TW concentration variations are
wards pointing triangles. Left propagating TW's at Ré and closely linked together-My=w/wy for not too smallw
TWU'’s at Re=0.025 are shown by lines with upwards pointing [33].

triangles. The SOC solution that exists only at=Reis shown in

the left column by lines with squares. TWD and TWU saddles in

0.0

2

o (x/d)
[

04

N-1

finite through flow are identified bp, U1, U2, U3, respectively, B. Phase dynamics near the drift instability
in (e). Dotted lines in(c) and (f) refer to pure fluid convectiony .
=0. Parameters are=0.01, o=10, = —0.25, k= . In the absence of through flow the transition from SOC at

r=r* to TW states at <r* is a drift instability. To eluci-
The nonlinear TW state at,.. has a frequency of only date and to understand how the through flow influences this
about &y . When reducing the drive the TW frequency transition we also used an extension of a few-mode Galerkin
increases up to abodiw,, at the saddle L"/~1.206. Below model [54] for SOC and TW convection to the case of

this saddle the system undergoes a transition to the condufrough flow. From this model we derive coupled equations

tive state. The reason for the associated discontinuous ond@f the phases of the relevant modes. These phase equations

of convection is a nonlinear feedback: Fg# 0, the Soret- a!low in particular to explain the change O.f the bifurcation

induced conductive concentration distribution weakens th&iagrams ofw versusr close tor* from the pitchfork topol-

buoyancy. Convection, on the other hand, redistributes th@3Y in Fig. 2b) to a shifted, imperfect bifurcation in Fig.

alcohol more evenly, thereby reducing the adverse Soret ef(€) o be a result of the through flow perturbation: It breaks

fect and thus increasing the buoyancy much more stronglje left-right symmetry and in addition causes an upward

than the flattening of the vertical temperature profile in theShift of the phase velocities, i.e., the frequencies of the two

bulk decreases the buoyancy. The increased buoyancy in tubfgveling waves. _ . _

strengthens convection, which again amplifies the buoyancy. The few-mode Galerkin mod¢b4] is based on the field
With increasingr the TW frequency decreases to zero, truncation

until there is a continuous transitiondt to SOC. For larger .

r one obtains stable SOC states. The transitionrat w(x,z,t)=[wy,(t)e "+ c.c]cod(7z), (4.1

=1.427 between the TW brandkolid lines with upwards

(downwards$ pointing, filled triangles for lefright) travel-

ing waves in Fig. 2and the SOC branctsolid lines with T(X,Z;t) = — 2+ Toxt) V2 sin272)

filled squares in Fig. Ris smooth and nonhysteretic. Viewed '

from the stable SOC branch abave, we have with decreas- +[Tyy(t)e >+ c.c.]\/i coswz), (4.2
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C(x,2,t)=— {1+ 272 [ coft) — 2co4(1) ]} 2
+Cox(t) V2 Sin 2mz+ Coy(t) 2 sin(472)
+lche ™ +ecly2
+[c(t)e ™ +c.c]

X2 cog27z)). 4.3

This field representation was shown to describe the bifurc
tion properties of TW and SOC rolls at R® quite well

[54]. For k=, we write the complex modes
W11,T11,C10,C10 iN polar form
4 BT2 A
ﬁwllzxe"ﬁx, 5 rTy=Ye?%
32\2 L322 |
5 rcio=U,e'%,, rc,=U,e'%, (4.4a

with the same scaling coefficients as in H&#]. The modes

672 2562 256\/2

5 ﬁrcofVl, ?rCoNz
(4.4b

rTo,=
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with o= 2 o, 7=1/27%, a=97%/128. The terms in front of
the Reynolds number Re come from the extengib] to
finite through flow. Their effect will be discussed further
below.

1. Absence of through flow

We consider first Re0. One first of all sees that for

phase differencea=8=y=0 one hasp=0, i.e., the SOC
state. Traveling waves can exist only for nonvanishing phase
differences. In the immediate vicinity of the SOC-TW tran-
sition the phase differences are small and one can expand the
equations for mode amplitudes and phase differences in low-
est order ofa,B,y. Then, the mode amplitudes are those of
the SOC states, i.e., constant, and E@s6) describe for
Re=0 a drift instability in a way that resembles the ampli-
tude equation description of a drift instability by Fausteal.

[55]. Here, in our case the SOC fixed point of the few-mode
Galerkin model loses stability at and immediately below

r* a drifting pattern with finitea, 3,y and finite w?= 2
«(r* —r) is stable[54]. Thus, the curvev versusr under-
goes a pitchfork bifurcation at*. However, due to the
smallness of the Lewis number the phase differengesmd

v grow rapidly withw. Already for very small frequencigd

and y reach values around/2, whereasx remains small.

2. Through-flow-induced imperfection

are real. For SOC patterns the fields have common fixed Incorporating the through flow into the field equations

phases, dx= by= by, = du,, and the amplitudes

X,Y,zZ,U;,U,,V,,V, are constant in time. Also in a TW the
field amplitudes are constant in time. However, the fou
phases increase in time with a common ré¢é= o given
by the TW frequency in such a way that the phase differ
ences

a=¢x—dy, PB=dx— by, y=dx— Py, (4.9
are constant in time.

Inserting the mode representatio#4) into the model
equations of Refl54] one obtains coupled equations for the
amplitudes X,Y,Z,U,;,U,,V,;,V, and the phases
bx. by, by, ¢y, Rewriting the latter in terms o= ¢y
and the phase differencé$.5) one finally has

7'._ Y ) n Ul ) +U2 . bR
A 3 Sinatay| <= sing+ oo siny = e,
(4.63
) : X
TCK:T(,D—(r—Z)VSIna-FCRe, (4.6b
B—rot| r+ 2 v,— 2v, | |2 sing+ | dre2|R
TB=TQ+|I 2| Vi gVe U—lsm,B eU—1 e,
(4.60
o a1 41X cYig
TY=TQ+ F+T 1 6 2 U—25|ny+ +eU—2 e
(4.60

r

give rise to the Re terms in Eq8t.6) with constant coeffi-
cientsb,c,d,e,f. With free-slipboundary conditions for the
velocity field at the plates one obtaibs=c=d=f, and the
coupling coefficiente betweenU, and U, vanishes due to
the orthogonality relation of the mode ansatz for the concen-
tration field. In this free-slip case, ttEindependent through
flow leads only to a frequency shift which is proportional to
the through flow rate Re. But otherwise the bifurcation sce-
nario remains unchanged since the free-slip plug flow can be
compensated by a Galilei transformation.

Enforcing realistimo-slipboundary conditions for the ve-
locity field at the plates, the Poiseuille profiz) leads to
different values ob, c, d, andf, and in addition there exists
an off-diagonal couplinge#0, betweerlJ; andU,. There-
fore the effect of through flow cannot be scaled out of the
equations via a Galilei transformation, and one observes in
addition to a frequency shift an imperfection of the fre-
quency bifurcation. Both effects can be qualitatively de-
scribed as resulting from a shifted, imperfect pitchfork bifur-
cation

0=(r*—r)(w— a; Re)— ay(w— a; Re)*+ a3 Re.

(4.7)

C. Bifurcation behavior in the presence of through flow

Here we discuss how the through flow changes the Re
=0 bifurcation topology globally. To that end we first
present in the right column of Fig. 2 the influence craall
through flow, Re=0.025, on the bifurcation diagrams fgr
=—0.25. In Sec. lll E we have investigated the linear stabil-
ity thresholdsr?, r2, andrY for TWS, TWD, and TWU
perturbations, respectively. Since in the presence of through
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flow the bifurcation branches starting from eith@r or rg evolves out of the right propagating TW connects smoothly
are connected at large with r5 for vanishing convective to thestableformer SOC solution at>r*.

amplitude(or extend with small amplitude te whenr? is With increasing Re the saddiés3 andU2 collide, and
infinite), we will discard the superscrif to guarantee that ©N€ iS left then with a solution branch of unstable TWU's

there is no ambiguity and use only the supersciipnd U. h_aving the saddldull only. 'I;Jhis saddIdJ.ll located in the
right column of Fig. 2 atrg;=1.08 originates from the
1. TWD's former SOC saddle atz°°=1.078 in the left-hand column

A through flow causes SOC patterns to propagate downgrgllj%hzﬂowg??:ilés Izocatlon is not much influenced by the

stream. Thus the through flow transforms the SOC solution : : )
branch and with it the former SOC-TW transition: the branch The TWU frequenc_y increases monotonically Whe_n fol
lowing the TWU solution branch from onset gY,,, to its

of right propagating TW's with positive frequency joins con- . .
tinuously with the branch of downstream propagating stateLarge{ asymptote. The asymptotic TWU fr_equ_ency of this
that evolves with increasing Re out of the former stable SO nstable, smgll-amphtude traveling wave s slightly be_low
branch forr >r*. In accordance to the linear results we call 'IEIV?/DagT;?tcc’etrlcfafrriguﬁggjythg O}Qe_rv?/t_asbgaé tlgrg];sei-tﬁ)rgplltude
this branch the TWD branch. It is marked by downwards The Nusgselt numbyer differences between TW's TWU’s
pointing triangles in the right-hand column of Fig. 2. S . ’ ’
The TWD solution branch foM, w, andN—1 contains and TWD's[Fig. 2c) gnd Fig. Zf)] are small. In_acc_ordance
one saddlg marked by the letteD ’in t’he w—r bifurcation to the.model of I-!olllngeret al._[54] Iarger oscillation fre- .
diagram of Fig. 2e)]. There the TWD solution being un- quencies of TWD’s are as;omated with smaller convective
stable at onset becomes stable. Take for example the TWBmplltudes and therefore with smaller Nusselt numbers com-
i pared to those of TWU’s. Comparing the mixing parameter

frequency curve in Fig. ). It starts out at the stability M [Figs. 48 and 2d)] one observes for TWU's a strong
thresholdr?,,,—being for k=7 and small Re only very . . U
increase inM nearrg;.

slightly above the Re 0 thresholdr ,;— with a frequency
at onsetw?,,p,, which is slightly throughflow enhanced rela-
tive to the Re=0 counterpariw,, (cf Fig. 1). Following the
TWD solution branch » drops continuously to the In the presence of through flow there arise different com-
asymptotic valuew=1 at larger far beyond the old binations of existence ranges of TW’s. There israrange
SOC-TW transition atr*. This asymptotic frequency is where only TWU's are stabler,gzsr<r2, and anr range
given by the phase velocity of the downstream propagatingvhere only TWD’s are stabler,g3sr. For ¢=—-0.25 and
former SOC pattern. Similarly the other TWD bifurcation Re=0.075 the rang@rgz,rgs] of existence of stable TWU's

curves forM andN—1 join smoothly at large” with the s separated from the range of existence of stable TWD's,

“downstream propagating SOC” at large resembles TwpD nor TWU states are stable.
strongly the one that one observes in a pure flyie0, with For Re=0 only a hysteresis between the basic state and
lateral through flow: The TWD Nusselt number approac,he%onvective states exists f0£W<r<rosc if one increases or
atlarger the y=0 Nusselt number marked by the dotted line o reases the Rayleigh number. In the presence of through
in Fig. 2(f). flow there exists an additional hysteresis of TW convection
for a combined change ofand Re. For Re0.075 one has

2. TWU's at small Re re;<rs for ¢=—0.25; in between this interval neither
TWD’s nor TWU's are stable. Consider as a start the stable
ol WU atr=1.25, Re=0.025. If one now first reducesto r

3. Hysteresis by changing r and Re

When switching on asmall through flow the solution
branch of left propagating waves that bifurcates out of th

conductive state with negative frequeneys — w,, evolves i1.20 and then increases the Reynolds number to Re
into the TWU solution marked in the right column of Fig. 2 =0.075 one still observes a stable TWU. On the other hand,

by lines with upwards pointing triangles. It starts out at the'f One first increases the Reynolds number to-Re075 one
TWU stability threshold %, —being fork= and small Re causes a transition TWJTWD. This TWD state then be-

only very slightly below the Re0 thresholdr ,.—with a comes unstable when reducing the Rayleigh number to

frequency at onsetw..,, which is slightly larger than its =1.20. In this case only the basic state is established.
Re=0 counterpartc.f. Fig. 1. Proceeding in Fig. 2 from the

TWU onset along the TWU solution branch it becomes 4. Dependence on) and Re

stable at the saddle marked by2 in Fig. 2e) and located at In Figs. 3 and 4 oscillation frequenay, mixing param-
re,=1.2. It remains stable until the saddié3 located at eterM, and Nusselt numbéd—1 are shown as functions of
r§3~=1.27. There, the stable TWU solution connects with anr for increasing through flow rates (R&®, 0.05, 0.1, 0.2b
unstable solution that has evolved out of the former uppeand three different Soret coupling strengthg=(—0.01,
unstable SOC branch with larger Nusselt number. This-0.1, —0.25.

saddle connection evolves with increasing through flow out With increasing through flow the frequency of TWD’s
of the w=0 merging at Re0 of the left propagating TW increases. In addition the convective amplitude and the Nus-
with the SOC atr*. To summarize: for small Re thetable  selt number decreases whereas the Rayleigh number of the
TWU connects atJ3 with the unstableformer SOC branch TWD saddle,r2, increases. The TWD bifurcation behavior
atr<r*. On the other hand, thstable TWD solution that described in Sec. IV C 1 fogr= —0.25, Re=0.025 remains
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FIG. 3. Influence of lateral through flow on bifurcation proper-
ties of roll convection for different Soret coupling strengthsas FIG. 4. Influence of lateral through flow on bifurcation proper-
indicated. Shown are, from top to bottom, mixing numbrfre- ties of roll convection for different Soret coupling strengthsas
quencyw, and Nusselt numbed — 1 versus reduced Rayleigh num- indicated. Shown are, from top to bottom, mixing numbrfre-
berr at Re=0 (left column) and at Re=0.05 (right column. Right ~ duencye, and Nusselt numbeéd — 1 versus reduced Rayleigh num-
propagating TW’s at Re0 and TWD's at Re-0.05: dashed lines. berr at Re=0.1 (left column and at Re-=0.25 (right column.
TWU's at Re=0.05: full lines. SOC at Re0: thin, dotted lines. TWD’s: dashed lines; TWU's: full lines; Nusselt numbers in pure
Nusselt numbers in pure f|u|dsp(: 0) th|ck’ dotted lines. The fluids (1,//=0) th|Ck, dotted lines. The Stab”lty of the solutions can
stability of the solutions can be inferred from Fig. 2 using the factbe inferred from Fig. 2 using the fact that it changes at the saddles.
that it changes at the saddles. ParametersLar€.01, o=10, k ~ Parameters are=0.01, 0=10, k= .
=1r.

one only observes TWU solutions starting froth,,, which

gualitatively unchanged at other Soret coupliigor other — are now again stable for Rayleigh numbers above the unique
through flow rates. This is most easily seen from the fact thai;addlerg .
the bifurcation topology of the dashed TWD curves in Figs.
3 and 4 is the same as that of the respective TWD solutions
(lines with downwards pointing trianglesn the right col- D. Wave number dependence

umn of Fig. 2. So far we have investigated in this Sec. IV patterns with

A growing through flow shifts the TWU saddé3 to-  wave numbek= . However, in experiments using narrow
wards smallerr, thus reducing the range of existence of convection channels with large aspect ratios; 1, different
stable TWU'’s further and further. Fap=—0.25 and Re convective patterns of spatially uniform amplitude with dif-
=0.01 one still sees thg3 saddle ar<r¢ . In addition  ferent wavelengths are possible. We therefore elucidate here
rs, is shifted to smaller-values with increasing through the wave number dependence of the order parameters too
flow rates. At Re=0.08 the saddleb)2 andU3 merge and and discuss our main results for such patterns of spatially
the range of existence of stable TWU’s disappears founiform amplitude.

y=—0.25.
Consider now the separation ratigp=—0.01: At Re 1. Absence of through flow
_ D V] H Y . . .
=0.1 one hasrg,;<rsap [S€€ Fig. 1a) for the critical In Fig. 5 the bifurcation branches of the Nusselt numbers

threshold$ Then, with increasing through flow rates both of TW and stable SOC states are plotted forReand equi-
stability thresholds cross and finally one obtain§,, distantly spaced. These curves were determined with our
<r5,pat large Re. Between ReD.10 and Re=0.25(Fig. 4  many-mode Galerkin scheme described in Sec. Il D. The bi-
the former TWU branch, connecting,, with rg,,,,, trans-  furcation surface oN—1 over ther —k plane branches out
forms into a TWD branch indicated by a change in the line-of the latter at the marginal stability curvét";’b(k) (thick full
style in the figures. For Re0.25 the unstable TWD branch line in Fig. 5 whereN—1—0. This threshold for onset of
(dashed line in Fig. ¥starting from the onset>,,,~1.05  convection increases whith increasing deviation of the wave
folds back to the basic state B, =1.47. At Re=0.5 the  number fromk"V. The thick dotted line connects the saddles
linear thresholds2., and rS,, have already disappeared rg"(k). They also move to larger for larger and smaller
[see also Fig. ()]. The whole TWD branch vanishes, and wave numbers compared to a minimum value closkezfﬁ.
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o 01=1.225
44 r=1.250
o o r=1.275
<+ 1=1.300
AT r=1.350
<+ r=1400
o~ a r=1.500
b 1=1.600
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FIG. 5. Bifurcation surface of Nusselt numbidr1 in the ab-
sence of through flow over thek plane. Thin lines show cuts at
equidistantly space#t values. Two symmetry degenerate left and
right propagating TW solutions with wave numbebranch out of
the conductive state at the stability thresho[c@g’b(k) (thick full
line) whereN— 1. The initially unstable TW’s become stable at the
saddler {"(k) (thick dotted ling. Parameters are=0.01, 0=10,
=—0.25, Re=0.

All in all, the surface of the order paramets(r,k)—1 in
Fig. 5 resembles that of a nose.

To discuss the wave number dependence of the order pa-
rameters we present in Fig. 6 cuts through the surfaces of
N(r,k), o(r,k), andM(r,k) at constant values. For orien-
tation we show in Fig. @ the marginal stability curve FIG. 6. Wave number dependence of order parameters
rowy(k) (thick line) and the position of the saddig"(k)  (b), » (c), andM (d) in the absence of through flow at different
(dotted ling for zero through flow. The hysteresis range, values. For orientation we show i@ the bifurcation threshold
ray (k) —rs™(k), of TW’s has a nearlk independent width  ry(k) (thick full line) and the saddle locationg"(k) (dotted
and moves to higher values wherfk—k!"| increases. line). Thick full curves in(c) denote frequenciest w{ k), of

. . ) W
In the hysteretical regior‘r,gwsr<r;\g’b, the bifurcation fght and left propagating TW's at pnsegtab(k). Saddle valu.es of
the order parameters are markedti, (c), and(d) by dotted lines.

branches taken at fixadas functions ok are closed in itself. i table betw t and saddle. Stable TW"
Stable and unstable branches are joined together at the sadd|y solutions are unstable between onset and saddle. Stable s
are located inlb) above, in(c) between, and iid) below the dotted

rgw(k) (dotted lines in Fig. Bat a small and a large wave saddle lines. Parameters dre-0.01, 0=10, y=—0.25, Re=0.
number. At these saddle connections one observes strong ' ' '
variations of all order parameters over thé plane. cally with k showing normal dispersion. Also the frequency
StableTW’S are |Ocated in the bifurcation diagrams Of Of the Sadd'e TW a]tgw(k) increases W|tHK a|0ng the dotted
Fig. 6(b) above, in Fig. &) between, and in Fig.(8) below  saddle line in Fig. &), however, with a smaller growth rate.
the dotted saddle lines. With increasingthe k range of  gimijlarly, the mixing parameteM of the saddle TW de-
stable TW solutions widensJnstableTW's are located be-  creases as a function kfalong the dotted saddle line in Fig.
state marked b —1=0 in Fig. €b), 0= * wga(K) (thick s much smaller than the critical frequenay,~ (k).
full lines) in Fig. &(c), angWM =1 in Fig. &d). For a fixedr At a fixed r the group velocityp 4= d,w, of stable(un-
above the minimum of ;;;,(k), the unstable TW solution stable right propagating TW's is negativépositive) for
branches are connected to the basic state at th&tvadues  gmallk, changes sign arourid= kZW’ and becomes positive
V\’_herer:rltvgb(k)fsee, e.g., the curves bf—1 versuskin  (negative for largerk. Furthermore, for a fixed the group
Fig. 6(b). Increasingr beyond, sayr=1.275 the unstable velocity of the two saddle TW’s diverges at the two intersec-
branches start to buckle before they reach the basic state @éns of the frequency curves in Fig(d# with the dotted
r=rgay(k) and then split apart. saddle line. The phase velocity, = w/k is always positive.
The Nusselt number is a nearly symmetric functiorkof At the SOC-TW transition; * (k), the TW solution branches
—kIW. The onset frequencyw!¥(k) [upper thick line in  merge with zero frequency with the stable SOC branches of
Fig. 6(c)], of the right propagating TW increases monotoni-the differentk’s.

k (1/d)
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FIG. 8. Wave number dependence of TWU order parameters
FIG. 7. Wave number' dependence of TWD order parameterﬂ_1 (b), ® (), andM (d) in the presence of a small through flow
N_,l (b), @ (c), andM (d) |r.1 the presence of a small through flow at differentr values. For orientation we show {a) the bifurcation
at dlfferenté values. For orler_uatlon we show (a) the blf_urcgtlon thresholdrg’tab(k) (thick full line) and the saddle Iocatiorr%l(k),
thresholdrg, (k) (thick full line) and the saddle locationg (k) rU(k), andr (k). The thick full curve in(c) denotes the TWU

(dotted ling. Thick full curve in(c) denotes the TWD frequency f U U , :
requenc k) at onsetr k). Stable TWU's occur only in
w2.(K) at onset 2 (k). Saddle values of the order parameters are quencywsiay(k) stat K) ur oy !

th haded int | bounded by th ddle ki dr
marked in(b), (c), and (d) by dotted lines. TWD’s are unstable © narrow shaded interval bounded by the sadde ﬁgan fs3

between onset and saddle. Stable TWD's are located)imbove shown in(g). Parameters are=0.01,0=10, y=-0.25, Re=0.1.
and in(c) and (d) below the dotted saddle lines. Parameterslare rg(k) (dotted lines in Fig. Yat a small and a large wave
=0.01,0=10, y=-0.25, Re=0.1. number, respectively.

StableTWD'’s are located in Fig. (b) above and in Figs.
7(c) and 7d) below the dotted saddle line. Here also the
range of stable TWD’s widens with increasingHowever,

The wave number dependence of the TWD order paramsince for finite through flow the onsef,, (k) and the saddle
eters at several fixedvalues is shown in Fig. 7 for a small rg(k) are shifted upwards towards higher Rayleigh numbers
through flow, Re=0.1. The presentation is the same as thathe stable interval for TWD's at fixedr has shrunk relative
of Fig. 6 for TW's at zero through flow except that in Fig. to the Re=0 situation. This is clearly visible in Fig. 7 near
7(c) only the positive frequency range of TWD’s is shown. the dotted saddle lines. For exampler at1.225 the size of
Also here the hysteresis range of TWD's between the marthe stable TWD interval for Re0.1 is less than half its size
ginal stability curver &,,(K) [thick full line in Fig. 7@] and  for Re=0. And for Re=0.25 the saddle positiorB(k) lies
the saddle 2(k) [dotted line in Fig. Ta)] moves with nearly  already completely above=1.225.UnstableTWD’s are lo-
independent width to higher values when|k—k2| in-  cated between the saddle lines and the onset marked by
creases. Similar to TW's at ReD, the TWD bifurcation =1 in Fig. 7b), o= w3,,(k) (thick full line) in Fig. 7(c),
branches taken at fixed as functions ofk are closed in  andM=1 in Fig. 7d).
themselves in the hysteretical regiong<r<r3_,,, and The Nusselt number curves of TWD's in Figby are not
stable and unstable branches are connected at the saddheich changed by the through flow. However, the TWD fre-

2. Finite through flow: TWD’s
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quencies show relative to their R® counterparts in Fig. ric in k—k¢ . But for such large through flow rates there
6(b) an additional linear increase withthat is proportional exist only unstable TWU's.
to Re. This increase reflects the TWD pattern advection by

the lateral throughflow. For Re0.25 the advective fre- V. TRANSIENTS
guency enhancement of larfgepatterns is already so strong ) ) ) o )
that one finds for a fixed saddle TWD's withk> 7 that In this section we investigat@) the growth dynamics out

have frequencies larger than the onset frequenfy(k of infinitesimal perturbations of the conductive state into
< ) atk< . Note that the TWD frequency branches in Fig. stable, strongly nonlinear TW';ﬁii) the transitjon between a
7(c) never approacl= 0 unlike their Re=0 counterparts in Twu and a TWD aft?r (_:hangmg the Rayleigh number, and
Fig. 6(c): the through flow destroys the TW-SOC transition (iii) the decay of TW'’s into the basic state. To analyze the
and the TWD patterns move at largewith an asymptotic transient dynamics we used among others lateral Fourier de-
finite frequency that roughly increases linearly with compositions of the numerically obtained fields. In particular

The through flow increases the mixing parametdrof we consider the fields at midheiglzt=0, of the layer
stable TWD’s by ak independent amount, say, froivi o
=(0.1 at Re=0 to M=0.2 at Re=0.25. f(X,ZZO;t)Z 2 fn(t)einkx. (51)
n=-—wx

3. Finite through flow: TWU'’s

The through flow has considerably more influence on leftieref_,=f3 since all fieldsf are real.
propagating TW’s than on right propagating TW's. There
may appear up to three saddles on the TWU solution A. Growth dynamics

branches that are identified = in Fig. 2 with increas- The initial growth dynamics out of the conductive state is

ing r by U1, U2, andU3. They make the wave number qominated by the=1 mode in Eq(5.1). As long as devia-

dependence of the bifurcation branchss ratheUr complicatedijons from the conductive state are still small enough they
In Fig. 8&) we show the saddlesg,(k), rs,(k), and  can pe described by the linear equatidBsl). Then f,(t)

rs3(K) together with the marginal stability threshall,,(k)  takes according to Eq€3.2), (3.3 the form
as functions ofk for Re=0.1. Stable TWU'’s exist for Re

>0 only in the range %(k) <r <r (k) that is finite only at fi(t)=Ape '“ple?!+ A e ulet, (5.2
small wave numbers and sufficiently small R&. shaded )
area between the two saddle lines in Figa)® At higher —Here wpy are frequenciesyp y growth rates, andp y
through flowsrgz(k) and rgs(k) merge, the stable TWU complex_amplltudes _of the TWD_and TWU, respec_nvely.
range is pinched off, and only unstable TWU'’s are left. We_ consider here a situation whereés larger than the t_)lfur-
To understand the topology of the TWU solution branche<ation threshold of TWU as well as of TWD perturbations so
at fixedr in Fig. 8 consider as an example the casel.35 that 7D’U>O. Then both waves grow. However, their initial
lying slightly aboverY that is marked by downwards point- 8MPlitudesAp Ay as well as their growth rateg, , yy and
ing triangles. The initially unstable TWU solution branches"el" frequenmesgD QU will in general be different. Cpnse-
start for this particularr at onset with wave numbek quently the cqntrlbutlon of tha=1 mode(5.2) to the ﬂelds
~2.78 withN—1=0 [Fig. 8(b)], »=w",, [at the ful thick (5.1 yields with wp>0 and wy<0 a rather complicated
line in Fig. 8c)], andM =1 [Fig. 8(d)]. Following the solu- superposmon of downstrear(r_mght) and of upstr_ean{left)
tion branches in Figs.(B)—8(d) with decreasind the Nus- travelm_g waves. For convenience we use .the '.”dm.@“d
selt number and the frequency grow whilé decreases. U also m_the case of zero th_rough flow to identify right and
Then, at the saddldJ2 at k=2.30 the TWU solution left traveling waves, respectively.
branches are folded back to increasing wave numbers and the
TWU'’s become stable. After passing the sadtlg at k
=2.31 whereN is maximal the TWU'’s lose stability. Then For a detailed discussion of the growth dynamics for Re
one wanders with decreasikgndN along the former upper =0 we refer t0[10,56,57. Here we review only the most
unstable SOC branch id—1 down to the saddl&1 atk important results to understand on this basis the effect of
=2.05. After that the wave number increases wiNleon-  through flow. We should also like to mention that in experi-
tinues to decrease to its minimum before it increases agaifents using large convection cells amplitude profiles and
on the way to thaJ1 saddle at larg&=4.53. At the second Phases of perturbations are inhomogenous, and one observes
maximum of N—1 at k=4.22 the former unstable lower complicated spatiotemporal dynamifs8-60,26,17. Here
SOC branch of the Nusselt number is again connected wite consider a setup with a separation ratie —0.25 and a
the unstable TW branch, and one finally reaches the basiéteral periodicity length of' =\ =2 with periodic boundary

1. Absence of through flow

state again, now, however, wit=3.50. conditions thus enforcing a spatially uniform amplitude pro-
In the absence of through flow the onset frequency of leffile. _ _
propagating TW's— wliy(k) [lower thick full curve in Fig. For Re=0 the eigenvalue problem for linear TW pertur-

6(c)], is monotonically decreasing with Due to the through bations of the conductive state is symmetry degenerate with
flow induced frequency enhancement—that increases almosty= — wp such that right and left propagating perturbations
linearly with k and Re—the group velocity of TWU’s at of the basic state have the same growth rafes v2, . How-
onset,dwoa(K), is much smaller in Fig. @) than in Fig.  ever, depending on initial conditions, the amplituégsand
6(b). Already for Re=0.25 the functionwg;, (k) is symmet- A}, of the two counterpropagating waves will in general be
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FIG. 9. Growth dynamics of lateral Fourier modes at midheight
of the fluid layer for Re=0. Initial condition is the basic state with
small noise 0f0(10™ %) superimposed onto the conductive tempera-
ture field. Left column shows in a pointer diagram the complex
amplitudesC; andw, in the complex amplitude plane. Right col-
umn shows time dependence of the moduli of the Fourier mode
Parameters are=0.01,0=10, y=-0.25, =1.418,k= 7.

FIG. 10. Growth dynamics of lateral Fourier modes at mid-
height of the fluid layer for Re 0.025. Otherwise the conditions
and quantities are the same as in Fig. 9.

%ribution causes the decrease of the oscillation frequency
10,57.

2. Presence of through flow: Competition

different. ForA3=0 or A2=0 one would have a pure TW between TWD and TWU
and for |A_%| =|AJ| one would have a standing wavéW) A small through flow breaks the symmetry degeneracy of
with amplitudes that are growing exponentially. the Hopf bifurcation. Bifurcation thresholds, frequencies,

In Fig. 9 we show the dynamics of the lateral Fourierand growth rates of TWD's and TWU'’s are different. For the
harmonicsw;, w; of the velocity field andC,, C; of the  parameters considered here we hawg|>|wy|, and yp
concentration field at midheight of the cell. The initial state <y, in the growth regime.
consists of the basic state, with random perturbations of the If one considers an initial situation witlp|=|Ay| then
temperature field o®(10 *) added to it. The Rayleigh num- a TWU will grow predominantly due to its larger growth
berr=1.418 is slightly above the oscillatory threshalg,.  rate. One should therefore observe a phase propagation in
=1.3348. In the linear growth regime up to about30 one  opposite direction to the through flow. But sindep)|
observes the growth dynamics of an almost ideal SW since>|w | there is for small amplitudes an additional down-
the random noise provides amplitudA% andA‘L’J , for right  stream phase propagation in through flow direction. How-
and left traveling waves, that are roughly of the same magever, this TWD contribution weakens further and further dur-

nitude. ing the nonlinear interaction regime until the TWD is totally
In the pointer diagram@eft columns of Fig. 9we show depressed by the predominantly growing TWU.
the dynamics of the complex mod€g andw; in the com- Such a scenario occurs in Fig. 10. Here, for=Re025,

plex plane. In this plot the initial SW shows up as an oscil-r =1.418, the temporal growth rateg,=0.39 and yp
lation along a straight line through the origin. Nonlinear in-=0.37 are slightly different, andoy=—10.42 while wp
teraction between the two counterpropagating waves that12.51. These growth rates and frequencies of TWU’s and
combine to the SW causes faster growth of the one with thd WD’s were obtained from a linear analysis. In the pointer
larger initial amplitude—in the case of Fig. 9 the left propa- diagram ofw, the initial SW motion along a straight line that
gating TW. This causes a transition from SW to pure TW. Itoccured in Fig. 9 for Re0 with equal growth rates and
manifests itself in the pointer diagram of; as a transition frequencies is here, in Fig. 10, replaced by the predominant
from a straight line via a spiral with counterclockwise mo- evolution of the TWU that is perturbed by modulations from
tion in outwards direction as long &s,| increases to a final the TWD contribution with larger frequency. The latter die
circular motion for the relaxed left propagating TW. The out soon and then an evolution towards a pure TWU takes
initial contribution of the right traveling wave gets totally place. However, for the parametef®e=0.025,r=1.418,
depressed by the nonlinear interaction with the predominaty=—0.25 of Fig. 10 the through flow does not admit a final,
ing left traveling wave. stable TWU statécf Fig. 2—the nonlinear TWU shown in
The amplitude ofC, strongly overshoots for reasons re- Fig. 10 up tot=100 is only transient. It transforms after
lated to the breaking of the large-amplitude standing conceranother 200-300 vertical thermal diffusion times into a
tration wave[10,57). It reaches its maximal value &=33  stable TWD.
and afterwards decreases very slowly to its final value. The For a ten times larger through flow, R®.25, one has
latter behavior is caused by convective mixing combinedy,;=0.43,yp=0.22,wy=—1.08,wp=22.03. Then a TWD
with diffusive homogenization to spatially constant plateaucontribution to the intial linear growth dynamics is no longer
values in regions of closed streamlines in the comovingvisible in Fig. 11. So initially there is only the TWU grow-
frame of reference of the TW, when the convection ampli-ing. But for this large through flow the phase propagation
tude has become sufficiently large. This concentration redisreversal into a TWD occurs already tat 35 (cf. the pointer
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FIG. 11. Growth dynamics of lateral Fourier modes at mid-
height of the fluid layer for Re 0.25. Otherwise the conditions and
guantities are the same as in Fig. 9.

diagram ofw; in Fig. 11). Thereafter the system relaxes into

the stable nonlinear TWD state. Thus, initially TWU’s win
the growth competition but finally only TWD’s will survive.

B. Dynamics at the transition TWU—TWD

Here we investigate the TWUTWD transition with a
reversal of the phase propagation. The problem of realizing a
TWD—TWU transition is discussed in Sec. V C. The tran-
sition from a stable TWU that exists in the interval
E[fgz,fgg] to a stable TWD can be enforced by increasing FIG. 13. (Color) Time evolution of concentration and velocity

the Rayleigh number to>rY beyond theU3 saddle. The fields shown in color coded and vector field plots, respectively,
dynamics of this transition IS'53 shown in Figs. 12 and. 13 during the transition TWU- TWD described in Fig. 12. Snapshots

In Fia. 12 we show the reaction of the order parameter were taken every 200 vertical thermal diffusion times from top to
9. . . . P . %ottom. Top plot is the TWU at=0, bottom plot the final TWD at
N,w, and M as a function of time during the transition

500 vertical th | diffusion ti . Redl lor implies |
TWU—TWD for the small through flow Re0.025. The (high\)/irolr??entrea[t?;i. fiiusion times. Reblue) color implies low
transition was initiated at=0 by instantaneously increasing
the Rayleigh number from=1.25 tor =1.27 shortly beyond

the U3 saddle. Then, with a fast initial transient on the time
scale of a few thermal diffusion times, the convective flow
adopts to the larger thermal driving which leads to an in-
crease of the Nusselt number and of the convective flow
intensity. The associated increase of the advective redistribu-
tion and mixing of the concentration field caudé¢and|w|

to decrease.

0.310

0.305

N

0.300

0.295 L A S e — As was pointed out in the last section the oscillation fre-
20 - i quency is coupled to finite phase shifts of mode amplitudes.
“% ol 1 A reversal of the phase propagation direction causes a
= change of sign of the phase differences between the mode
S 00 . amplitudes. At the transition TWGJTWD (i) phase shifts
1.0 , , : , , pass through zero in order to reverse the phase propagation

direction or(ii) mode amplitudes vanish to allow for phase
jumps. Here the phas@rl of T, approaches nearly linearly
the phasepwl of w;. Crossing the zero line QﬁTl—goWl at
t=400 in Fig. 12 happens at the same time when a phase
jump of ®c,~ Pw, OCCUrs which indicates th&l, vanishes.
After that the system relaxes into the stable final TWD state
at about 500 vertical thermal diffusion times.

FIG. 12. Time evolution of order parameté{s- 1, » , andM at A more detailed visualization of the transition
transition TWU— TWD initiated att=0 by an instanteneous step TWU—TWD is shown in Fig. 13. There we show successive
r=1.25-1.27 beyond theU3 saddle. Parameters ate=0.01,  snapshots of the concentration field and of the velocity field
0=10, y=—0.25,k=m, Re=0.025. taken every 200 vertical thermal diffusion times. &t 0

0.20

0.10
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t (d’70)
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(top of Fig. 13 the stable TWU is shown before we have amplitude and in addition increases the frequency. Both pro-
increased the Rayleigh number. There the left, counterclockesesses drive the TWD further away from the stable TWU and
wise circulating roll has a higher concentration level than thecause instead a decay into the stable basic state rather than
right, clockwise circulating roll. Due to the phase differencetransition to the stable TWU.
between velocity and concentration field the concentration
plateaus are asymmetrically fed by the boundary layers at the VI. CONCLUSION
plates[31,9,10. At t=200 (second picture of Fig. 13the . .
oscillation frequency determined via the temporal derivative 1 he effect of a horizontal through flow with small Rey-
of ¢ vanishes. In contrast to that the phase differencd!©!dS number on stationary and traveling wave convective
1 . patterns of rolls oriented perpendicular to the through flow
¢c, ™ Pw, has changgd only sl|ghtly and r(?aches.only has been investigated numerically with a Galerkin expansion
aroundt=400 (third picture of Fig. 13 At this particular  and a finite-difference method. We first have reviewed linear
time the boundary layers between the rolls are located righgifurcation properties and in particular the through flow-
at the positions of maximal up- and downflow so that theinduced symmetry breaking of the oscillatory instability.
concentration plateaus are fed symmetrically by the boundthen the influence of a through flow on nonlinear bifurcation
ary layers at the plates. The concentration equilibrates due fgroperties is elucidated as a function of Re for several nega-
the strong convective mixing before the phase differenceive Soret coupling strengthg. Also the wave number de-
®c,~ ¢w, changes sign. Thereafter the left, counter clock-pendence of the bifurcation properties of the order param-
wise circulating roll is fed predominantely from the bottom eters mixing numbeM, Nusselt numbeN, and oscillation
plate with low concentration values whereas the right, clockfrequencyw has been determined.
wise circulating roll is fed from the top plate, and a large The through flow causes stationary patterns to propagate
concentration contrast between adjacent rolls is reestablisheédd furthermore lifts the symmetry degeneracy between left
when the system finally relaxes to the TWD stélest pic-  and right propagating TW’s at Re0. The right(left) propa-
ture of Fig. 13. gating wave with positivénegative frequency at Re 0 be-
comes a downstrearfupstream propagating TWD(TWU)
C. Decay dynamics of TW’s in the presence of a small through flow. Not only the onset
) ) " . _Rayleigh number and initial frequency of TWD and TWU
Here we briefly discuss the transition from propagatingyitter hut more importantly the symmetry degenerate zero-
convective roll patterns into the basic state when decreasmgequency merging of the two TW's with the SOC occurring
the R_ayleigh number below the saddles that delimit the rangg,. re— 0 atr* is dramatically changed by the through flow.
of existence towards smallvalues. . In the absence of through flow the transition from the two
In the absepce of througvr\) flow such a S|tu_at|on OCCUIgtaple symmetry degenerate TW states-at* to a stable
when decreasing below rg™. In our MAC smulatlon SOC atr=r* marks a drift instability of the latter towards
for ¢=-0.25,L=0.01, =10, k=7 we have instanta- the former. The pitchfork topology of the associated bifurca-
neously changed the Rayleigh number from 1.25 tor tion diagram ofw versusr close tor* is changed to a
=1.20<rg". After reducing the thermal driving the convec- ghifted, imperfect bifurcation by the through flow: It breaks
tion amplitude and the Nusselt number decrease during afame |eft-r|ght Symmetry |eading to a breakup and reconnec-
transient. Caused by the reduced convection amplitude thgyn of the TW-SOC connections &t . In addition the phase
mixing of the concentration field weakens and the mixingye|ocities, i.e., the frequencies of the two TW's are shifted
parameteM and the oscillation frequency increases. After upwards. For small Re the TWU solution branch gets con-
this fast transieniN decreases slowly over a period of 100 nected with theunstableformer SOC branch at<r*. On
vertical diffusion times wheread increases further. At this the other hand, thetable TWD solution that evolves with
time the mixing parameter reaches its maximum value at fhcreasing through flow out of the right propagating TW con-
frequency ofw=7. This slow process is followed by a fast nects smoothly to thetableformer SOC solution at>r*.
decay qf all field amplitudes when the_ system relaxes into |n the last section we have investigated the growth dy-
the basic state. During the whole transient of decay the TWgmics from infinitesimal perturbations of the conductive
with the opposite phase propagation direction, which is linstate into stable, strongly nonlinear TW’s, the transition be-
early damped for <r, is not excited, so we have a pure tween a TWU and a TWD after changing the Rayleigh num-
TW decay into the basic state. _ ber, and the decay of TW’s into the basic state. For-Re
We also investigated the decay dynamics of TWD's asight and left propagating perturbations of the basic state
well as of TWU's for finite through flow rates. They both haye the same growth rate. So for “generic” initial pertur-
show similar behavior compared to the dynamics in the abpations for which the amplitudes of the two counterpropagat-
sence of through flow described above. In the presence q,f]g waves are small anwughly the same one observes ini-
through ﬂOW thel’e can eXiSt a Situation Whe%<r<rg . Ua”y an exponentia”y growing Standing wave. The
Here, a transition TWB-TWU seems possible, at least in nonlinear interaction between the two counterpropagating
principle, when the Rayleigh number remains abovell2e  waves that combine to the SW causes faster growth of the
saddle arg,. But such a transition from a TWD to a TWU one with the larger initial amplitude and finally a pure right
has never occurred in the numerical MAC simulations. Dueor left propagating TW occurs. In the presence of a small
to their higher frequencies TWD’s have smaller convectionthrough flow, bifurcation thresholds, frequencies, and growth
amplitudes compared to TWU’s. A decrease into the Rayrates of TWD’s and TWU’s are different. For “generic”
leigh number bandrg,,r2) further decreases the convection initial perturbations a TWU will grow due to its larger

a
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growth rate thereby suppressing any TWD admixture. Howbetween the rolls are located right at the positions of maxi-
ever, the stability range of final-state nonlinear TWD’s ismal up- and downflow so that the concentration is fed sym-
typically much larger than the one of TWU's. So for many metrically into the rolls. The concentration equilibrates due
parameters the system cannot run into a stable TWU. In sucly the strong convective mixing before the phase difference
a situation one observes finally a tranformation of the tranpetweerC andw changes sign. Thereafter the system relaxes

sient TWUtoaTWD. into the TWD state with a reverted concentration contrast
The TWU-TWD transition with a reversal of the phase petween the rolls. Velocity and temperature fields do not

propagation being an interesting and experimentally realizchange much during this transition.
able phenomen was investigated in more detail: In a TWU
(TWD) the counterclockwise circulating roll has a higher
(lower) concentration level than the clockwise circulating
roll—due to the respective phase differences betweemd

w concentration is fed asymmetrically by the boundary lay- This work was supported by the Deutsche Forschungsge-
ers at the plates into the two rolls. When the phase velocityneinschaft. The John von Neumann-Institut €omputing
reverses during the transition the vertical boundary layerin Juich provided computer time.
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